

DECLARAÇÃO DE DESEMPENHO

DoP número: MKT-2.5-300_pt

♦ Código de identificação único do produto-tipo: Âncora composta VZ

♦ Utilização(ões) prevista(s):

Âncora de união para uso em concreto,

ver Anexo B / Annex B

♦ Fabricante:

MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

♦ Sistemas de avaliação e verificação da regularidade:

1

♦ Documento de Avaliação Europeu

EAD 330499-01-0601

Avaliação Técnica Europeia :

ETA-20/0533, 17.04.2021

Organismo de Avaliação Técnica:

DIBt, Berlin

Organismo(s) notificado (s):

NB 2873 - Technische Universität Darmstadt

→ Desempenho(s) declarado(s):

Características essenciais	Desempenho
Resistência mecânica e estabilidade (BWR 1)	
Resistências características sob carga de tração (efeitos estáticos e quase-estáticos)	Anexo / Annex C1, C2, B2
Resistências características sob tensão transversal (efeitos estáticos e quase-estáticos)	Anexo / Annex C1, C3
Deslocamentos (efeitos estáticos e quase-estáticos)	Anexo / Annex C4
Resistência característica e deslocamentos para a categoria de desempenho sísmico C1 + C2	Desempenho não determinado
Higiene, saúde e ambiente (BWR 3)	
Conteúdo, emissão e / ou liberação de substâncias perigosas	Desempenho não determinado

O desempenho do produto identificado acima está em conformidade com o conjunto de desempenhos declarados. A presente declaração de desempenho é emitida, em conformidade com o Regulamento (EU) n.o 305/2011, sob a exclusiva responsabilidade do fabricante identificado acima.

Assinado por e em nome do fabricante por:

Stefan Weustenhagen (Diretor-gerente)

Dipl.-Ing. Detlef Bigalke

(Director de Desenvolvimento de Produto)

Weilerbach, 17.04.2021

O original desta declaração de desempenho foi escrito em alemão. Em caso de desvios na tradução, a versão alemã é válida.

Specifications of intended use

Anchor size		M8	M10	M12	M16	M20		
Static or quasi-static act	ion			~				
Base materials		. ,	without fibers a	cc. to EN 206	normal weight 2013+A1:2016 to EN 206:201 concrete	5		
Temperature range I	-40°C to +40°C	max long term temperature +24°C; max short term temperature +40°C						
Temperature range II -40°C to +80°C max long term temperature +50°C; max short term temperature								

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all versions
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2015, Annex A, Table A.2:

V-A A2: CRC II
 V-A A4: CRC III
 V-A HCR: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed according to EN 1992-4:2018 or TR 055, version February 2018

Installation:

- · Dry or wet concrete
- Making of drill hole by hammer drilling, compressed air drilling or vacuum drilling
- Installation direction: D3 downwards, horizontally and upwards (e.g. overhead) installation

Table B1: Installation parameters

Anchor size				M10	M12	M16	M20
Diameter of threaded rod	d=d _{nom}	[mm]	8	10	12	16	20
Nominal diameter of drill hole	d_0	[mm]	10	12	14	18	22
Depth of drill hole	h ₀	[mm]	80	90	110	125	170
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170
Diameter of clearance hole in the fixture	đ _f	[mm]	9	12	14	18	22
Cleaning Brush		[-]	RB 10	RB 12	RB 14	RB 18	RB 22
Diameter of Cleaning Brush	d _b ≥	[mm]	10,5	12,5	14,5	18,5	22,5
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	150

Supplies

Vacuum drill bit

Vacuum drill bit (MKT Hollow drill bit SB, Würth extraction drill bit or Heller Duster Expert) and a class M vacuum with minimum negative pressure of 253 hPa and a flow rate of minimum 42 l/s

Blow-out pump (volume 750ml)

Cleaning Brush RB

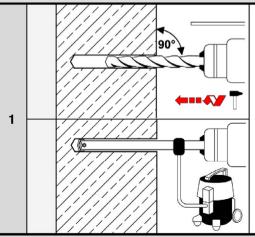
Table B2: Minimum member thickness, edge distance and spacing

Anchor size			М8	M10	M12	M16	M20
Minimum member thickness	h _{min}	[mm]	110	120	140	160	220
Minimum edge distance	Cmin	[mm]	40	45	45	50	55
Minimum spacing	Smin	[mm]	40	50	60	75	90

Table B3: Curing time

Concrete temp	perature	Minimum curing time
-20°C to	-16°C	17 h
-15°C to	-11°C	7 h
-10°C to	-6°C	4 h
-5°C to	-1°C	3 h
0 _° C to	+4°C	50 min
+5°C to	+9°C	25 min
+10°C to	+19°C	15 min
+20°C to	+29°C	6 min
+30°C to	+40°C	6 min
Capsule temp	perature	-15°C to +40°C

Capsule Adhesive Anchor VZ


Intended use

Installation parameters, edge distance and spacing, Curing time

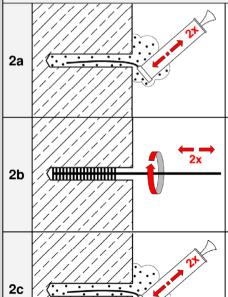
Annex B2

Installation instructions

Drilling

Hammer drill or compressed air drill:

Drill the hole with diameter and depth according to Table B1. Continue with step 2.


Vacuum drill: see Annex B2

Drill the hole with diameter and depth according to Table B1. Additional cleaning is not necessary - continue with <u>step 3</u>.

Cleaning

2

Drill hole must be cleaned directly before installation of the anchor, or it must be protected against recontamination in a suitable manner until installation of the anchor.

Blow out the drill hole completely at least **2x** from the bottom of the drill hole with blow-out pump or compressed air.

Brush the drill hole 2x with Cleaning Brush RB (Table B1). Observe and check brush diameter $d_{b,min}$. When inserting the brush into the drill hole, a clear resistance must be noticeable. Otherwise use a new Cleaning Brush.

Blow out the drill hole completely at least 2x from the bottom of the drill hole with blow-out pump or compressed air.

Capsule Adhesive Anchor VZ

Installation instructions - continuation

Ins	erting the threaded rod	
3		Insert the capsule into the drill hole.
4		Drive in the anchor rod using a hammer drill set on rotary impact. Stop immediately after reaching the setting depth.
5	·c	Observe curing time according to Table B3. Do not move or load the anchor until it is fully cured.
6		Remove excess adhesive.
7	T _{inst}	Install fixture and apply installation torque T _{inst} according to Table B1.

Capsule	Adhesive	Anchor	٧Z
---------	----------	---------------	----

Table C1: Characteristic steel resistance under tension load

Anchor size				M8	M10	M12	M16	M20			
Steel failure											
Characteristic resistance under tension load											
Steel,	Property class 5.8	N _{Rk,s}	[kN]	18	29	42	79	123			
zinc plated	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	126	196			
Stainless steel / High corrosion resistant	Property class 70	N _{Rk,s}	[kN]	26	41	59	110	172			
steel	Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196			
Partial factor 1)											
Steel,	Property class 5.8	γMs,N	[-]			1,5					
zinc plated	Property class 8.8	γMs,N	[-]	1,5							
Stainless steel / High corrosion resistant	Property class 70	γMs,N	[-]			1,87					
steel	Property class 80	γMs,N	[-]	1,6							

¹⁾ In absence of other national regulations

Table C2: Characteristic steel resistance under shear load

Anchor size				M8	M10	M12	M16	M20			
Characteristic resistance	haracteristic resistances under shear load										
Steel failure <u>without</u> lever arm											
Steel,	Property class 5.8	$V^0_{Rk,s}$	[kN]	11	17	25	47	73			
zinc plated	Property class 8.8	V ⁰ Rk,s	[kN]	15	23	34	63	98			
Stainless steel /	Property class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86			
High corrosion resistant steel	Property class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98			
Steel failure with lever ar	m			•	•						
Steel,	Property class 5.8	M ⁰ Rk,s	[Nm]	19	37	65	166	325			
zinc plated	Property class 8.8	M ⁰ Rk,s	[Nm]	30	60	105	266	519			
Stainless steel /	Property class 70	M ⁰ Rk,s	[Nm]	26	52	92	233	454			
High corrosion resistant steel	Property class 80	M ⁰ Rk,s	[Nm]	30	60	105	266	519			
Partial factor 1)					•						
Steel,	Property class 5.8	γMs,V	[-]			1,25					
zinc plated	Property class 8.8	γMs,V	[-]	1,25							
Stainless steel /	Property class 70	γMs,V	[-]			1,56					
High corrosion resistant steel	Property class 80	γ̃Ms,V	[-]			1,33					

¹⁾ In absence of other national regulations

Capsule Adhesive Anchor VZ	
Performance Characteristic steel resistance under tension and shear load	Annex C1

				_	_	_	
Tabla	C2.	Charac	torictio	values	for to	ancian	load
lable	CO.	Cilaiau	iensuc	values	IUI U	CHOIDH	ıvau

Anchor size				М8	M10	M12	M16	M20
Steel failure								
Characteristic resistance	under tension load							
Characteristic tension resis	stance	$N_{Rk,s}$	[kN]		se	e Table	C1	
Partial factor		γMs,N	[-]		se	e Table	C1	
Combined pull-out and o	oncrete failure							
Characteristic bond resis	stance in <u>uncracked</u> cond	crete C2	20/25					
Temperature range I:	+24°C / +40°C	τ _{Rk,ucr}	[N/mm ²]	10,0	13,0	13,0	13,0	13,0
Temperature range II:	+50°C / +80°C	τ _{Rk,ucr}	[N/mm ²]	8,5	11,0	11,0	11,0	11,0
Increasing factors for uncr	acked concrete	Ψc	[-]		($\left(\frac{f_{ck}}{20}\right)^{0.17}$	7	
Characteristic bond resis	stance in <u>cracked</u> concre	te C20/2	25					
Temperature range I:	+24°C / +40°C	τ _{Rk,cr}	[N/mm²]	5,0	6,5	7,0	7,5	7,5
Temperature range II:	+50°C / +80°C	τ _{Rk,cr}	[N/mm ²]	4,5	5,5	6,0	6,0	6,0
Increasing factors for crac	ked concrete	ψο	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.14}$				
Reduction factor ψ ⁰ sus in	concrete C20/25							
Temperature range I:	+24°C / +40°C	ψ^0 sus	[-]			0,64		
Temperature range II:	+50°C / +80°C	ψ^0_{sus}	[-]			0,63		
Concrete cone failure								
Factor k ₁ -	uncracked concrete	k _{ucr,N}	[-]			11,0		
racioi ki	cracked concrete	k _{cr,N}	[-]			7,7		
Edge distance		C _{cr,N}	[mm]			1,5 h _{ef}		
Spacing		S _{cr,N}	[mm]			3 h _{ef}		
Splitting failure								
h/h _{ef} ≥ 2,0						1,0 h _{ef}		
Edge distance 2,0> h/h _{ef} > 1,3		C _{cr,sp}	[mm]		2 • h	_f (2,5 - h	ı / h _{ef})	
h/h _{ef} ≤ 1,3				2,4 h _{ef}				
Spacing		S _{cr,sp}	[mm]			2 c _{cr,sp}		
Installation factor		γinst	[-]			1,2		

Capsule Adhesive Anchor VZ			

Table C4: Characteristic values for shear loads

Anchor size			М8	M10	M12	M16	M20		
Steel failure without lever arm									
Characteristic shear resistance	V ⁰ Rk,s	[kN]	see Table C2						
Ductility factor	k ₇	[-]	1,0						
Partial factor	γMs,V	[-]	see Table C2						
Steel failure with lever arm									
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	see Table C2						
Partial factor	γMs,V	[-]	see Table C2						
Concrete pry-out failure									
Pry-out factor	k 8	[-]	2,0						
Concrete edge failure									
Effective length of anchor	If	[mm]	min (h _{ef} ;12 d _{nom})						
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20		
Installation factor	γinst	[-]	1,0						

Capsu	le Ac	lhesive	Anc	hor	٧Z
-------	-------	---------	-----	-----	----

Characteristic values under shear load

Table C5: Displacements under tension load

Anchor size			M8	M10	M12	M16	M20	
Displacement factor ¹⁾ for uncracked concrete								
Displacement	δ _{N0} -factor	[mm/(N/mm²)]	0,015	0,031	0,035	0,015	0,046	
	δ _{N∞} -factor	[mm/(N/mm²)]	0,085	0,067	0,067	0,067	0,067	
Displacement factor ¹⁾ for cracked concrete								
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,046	0,038	0,024	0,008	0,024	
	δ _{N∞} -factor	[mm/(N/mm²)]	0,192	0,142	0,090	0,104	0,082	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$ τ : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$:

Table C6: Displacements under shear load

Anchor size			М8	M10	M12	M16	M20
Displacement factor ¹⁾							
Displacement	δvo-factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04
	δ∨∞-factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Annex C4