

**IZJAVA O SVOJSTVIMA** 

# DoP br. MKT-2.5-301\_hr

| ∻ | Jedinstvena | identifikacijska | oznaka | vrste |
|---|-------------|------------------|--------|-------|
|   | proizvoda:  |                  |        |       |

- ♦ Namjena/namjene:
- Proizvođač:

#### Kemijsko sidro VZ

Kompozitni tiple za sidrenje u betonu, vidi Prilog/Annex B

MKT Metall-Kunststoff-Technik GmbH & Co.KG Auf dem Immel 2 67685 Weilerbach

- Sustav ili sustavi ocjenjivanja i provjere stalnosti svojstava građevnog proizvoda:
- 1
- Europski dokument za ocjenjivanje:
   Europska tehnička ocjena:
   Tijelo za tehničko ocjenjivanje:
   Prijavljeno tijelo/prijavljena tijela:

EAD 330499-01-0601 ETA-20/0533, 16.12.2022 DIBt, Berlin NB 2873 – Technische Universität Darmstadt

♦ Objavljena svojstva:

| Bitnih značajka                                                                        | Svojstva                          |  |  |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Temeljni zahtjevi za gradevine (BWR 1)                                                 | ····                              |  |  |  |  |
| Karakteristični otpori pod vlačnim opterećenjem<br>(statički i kvazi-statički efekti)  | Prilog / Annex C1, C2, C5, B2, B3 |  |  |  |  |
| Karakteristični otpori pod poprečnim naprezanjem<br>(statički i kvazi-statički efekti) | Prilog / Annex C1, C3, C6         |  |  |  |  |
| Pomaci                                                                                 | Prilog / Annex C7                 |  |  |  |  |
| Karakteristični otpor za seizmičke performanse kategorije C1                           | Prilog / Annex C4                 |  |  |  |  |
| Karakteristični otpor i pomaci za seizmičke performanse kategorije C2                  | Performanse nisu ocijenjene       |  |  |  |  |
| Higijena, zdravlje i okoliš (BWR 3)                                                    |                                   |  |  |  |  |
| Sadržaj, emisija i / ili oslobađanje opasnih tvari                                     | Performanse nisu ocijenjene       |  |  |  |  |

Izvedba gore navedenog proizvoda je deklarirana izvedba / izvedba. Gore navedeni proizvođač jedini je odgovoran za sastavljanje izjave o učinkovitosti u skladu s Uredbom (EU) br. 305/2011.

Za proizvođača i u njegovo ime potpisao:

Stefan Weustenhagen (generalni direktor) Weilerbach, 16.12.2022

p.p. Rigulle

**Dipl.-Ing** Detlef Bigalke (Voditelj razvoja proizvoda)



Izvornik ove izjave o izvedbi pisan je na njemačkom jeziku. U slučaju odstupanja u prijevodu vrijedi njemačka verzija.

# Specifications of intended use

| Chemical Anchor VZ with                    | Anchor rod<br>V-A                                                                                          | Internally threaded anchor rod<br>VZ-IG |  |  |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Static or quasi-static action              | <b>M8</b> to <b>M24</b>                                                                                    | IG-M6 to IG-M16                         |  |  |  |  |  |
| Seismic action,<br>performance category C1 | <b>M8</b> to <b>M24</b>                                                                                    | no performance assessed                 |  |  |  |  |  |
|                                            | compacted, reinforced or unreinforced normal weight concrete<br>without fibers acc. to EN 206:2013+A1:2016 |                                         |  |  |  |  |  |
| Base materials                             | strength classes C20/25 to C50/60, acc. to EN 206:2013+A1:2016                                             |                                         |  |  |  |  |  |
|                                            | cracked or uncracked concrete                                                                              |                                         |  |  |  |  |  |
| Temperature range I -40°C to +40°C         | max long-term temperature +24°C; max short-term temperature +40°C                                          |                                         |  |  |  |  |  |
| Temperature range II -40°C to +80°C        | max long-term temperature +50°C; max short-term temperature +80°C                                          |                                         |  |  |  |  |  |

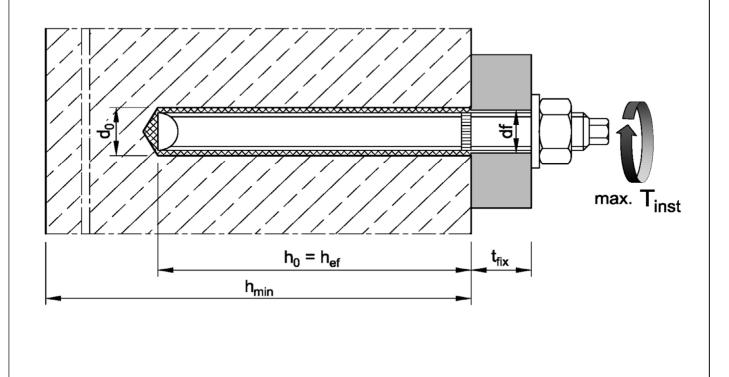
#### Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: all versions
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2015, Annex A, Table A1:
  - V-A A4: CRC III - V-A HCR: CRC V

## Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed according to EN 1992-4:2018 or TR 055, version February 2018

#### Installation:

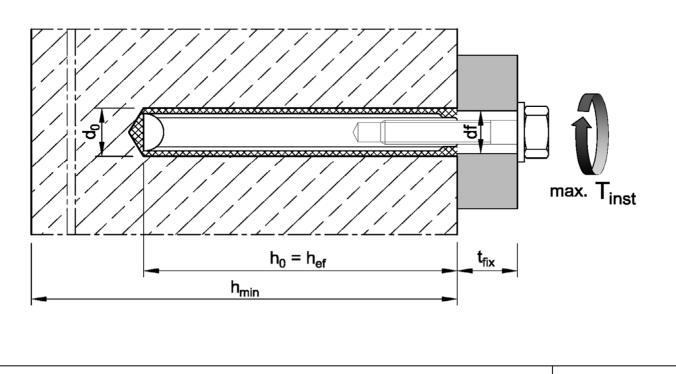

- Dry or wet concrete
- · Making of drill hole by hammer drilling, compressed air drilling or vacuum drilling
- · Installation direction: D3 downwards, horizontally and upwards (e.g. overhead) installation
- Optionally, the annular gap between anchor rod and attachment can be backfilled. In this case, the washer is replaced by the filling washer (Part 3b, Annex A2). MKT injection mortars VMH, VMU plus, VMZ or other high-strength injection mortars with a compressive strength ≥ 40N/mm<sup>2</sup> can be used for backfilling.
- <u>Internally threaded anchor rods</u>: Bolts or threaded rod (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod that is used.

## **Chemical Anchor VZ**

Intended Use Specifications

| Anchor rod V-A                            | M8                    | M10  | M12    | M16     | M20     | M24     |         |         |  |  |  |
|-------------------------------------------|-----------------------|------|--------|---------|---------|---------|---------|---------|--|--|--|
| Resin Anchor Capsule                      |                       |      | VZ-P 8 | VZ-P 10 | VZ-P 12 | VZ-P 16 | VZ-P 20 | VZ-P 24 |  |  |  |
| Diameter of threaded rod                  | d=d <sub>nom</sub>    | [mm] | 8      | 10      | 12      | 16      | 20      | 24      |  |  |  |
| Nominal diameter of drill hole            | do                    | [mm] | 10     | 12      | 14      | 18      | 22      | 28      |  |  |  |
| Depth of drill hole                       | h <sub>0</sub>        | [mm] | 80     | 90      | 110     | 125     | 170     | 210     |  |  |  |
| Effective anchorage depth                 | h <sub>ef</sub>       | [mm] | 80     | 90      | 110     | 125     | 170     | 210     |  |  |  |
| Diameter of clearance hole in the fixture | df                    | [mm] | 9      | 12      | 14      | 18      | 22      | 26      |  |  |  |
| Cleaning Brush                            |                       | [-]  | RB 10  | RB 12   | RB 14   | RB 18   | RB 22   | RB 28   |  |  |  |
| Diameter of Cleaning Brush                | d₅≥                   | [mm] | 10,5   | 12,5    | 14,5    | 18,5    | 22,5    | 28,5    |  |  |  |
| Maximum installation torque               | max T <sub>inst</sub> | [Nm] | 10     | 20      | 40      | 80      | 150     | 200     |  |  |  |
| Minimum member thickness                  | h <sub>min</sub>      | [mm] | 110    | 120     | 140     | 160     | 220     | 270     |  |  |  |
| Minimum edge distance                     | Cmin                  | [mm] | 40     | 45      | 45      | 50      | 55      | 60      |  |  |  |
| Minimum spacing                           | Smin                  | [mm] | 40     | 50      | 60      | 75      | 90      | 115     |  |  |  |

# Table B1: Installation parameters for anchor rods V-A




## **Chemical Anchor VZ**

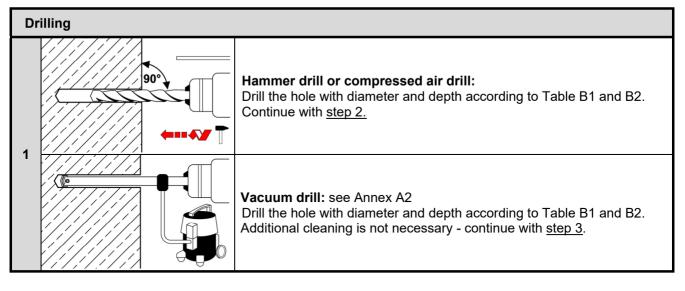
#### Intended Use Installation parameters – Anchor rod V-A

| Internally threaded anchor rod VZ            | Z-IG                  |         | IG-M 6  | IG-M 8  | IG-M 10 | IG-M 12 | IG-M 16 |
|----------------------------------------------|-----------------------|---------|---------|---------|---------|---------|---------|
| Resin Anchor Capsule                         | VZ-P 10               | VZ-P 12 | VZ-P 16 | VZ-P 20 | VZ-P 24 |         |         |
| Outer diameter of threaded rod <sup>1)</sup> | d=d <sub>nom</sub>    | [mm]    | 10      | 12      | 16      | 20      | 24      |
| Inner diameter of threaded rod               | d <sub>2</sub>        | [mm]    | 6       | 8       | 10      | 12      | 16      |
| Nominal drill hole diameter                  | d <sub>0</sub>        | [mm]    | 12      | 14      | 18      | 22      | 28      |
| Depth of drill hole                          | h <sub>0</sub>        | [mm]    | 90      | 110     | 125     | 170     | 210     |
| Effective anchorage depth                    | h <sub>ef</sub>       | [mm]    | 90      | 110     | 125     | 170     | 210     |
| Diameter of clearance hole in the fixture    | df                    | [mm]    | 7       | 9       | 12      | 14      | 18      |
| Cleaning Brush                               |                       | [-]     | RB 12   | RB 14   | RB 18   | RB 22   | RB 28   |
| Diameter of Cleaning Brush                   | d <sub>b</sub> ≥      | [mm]    | 12,5    | 14,5    | 18,5    | 22,5    | 28,5    |
| Maximum installation torque                  | max T <sub>inst</sub> | [Nm]    | 10      | 10      | 20      | 40      | 60      |
| Minimum member thickness                     | h <sub>min</sub>      | [mm]    | 120     | 140     | 160     | 220     | 270     |
| Minimum edge distance                        | Cmin                  | [mm]    | 45      | 45      | 50      | 55      | 60      |
| Minimum spacing                              | S <sub>min</sub>      | [mm]    | 50      | 60      | 75      | 90      | 115     |

<sup>1)</sup> With metric thread acc. to EN 1993-1-8:2005+AC:2009

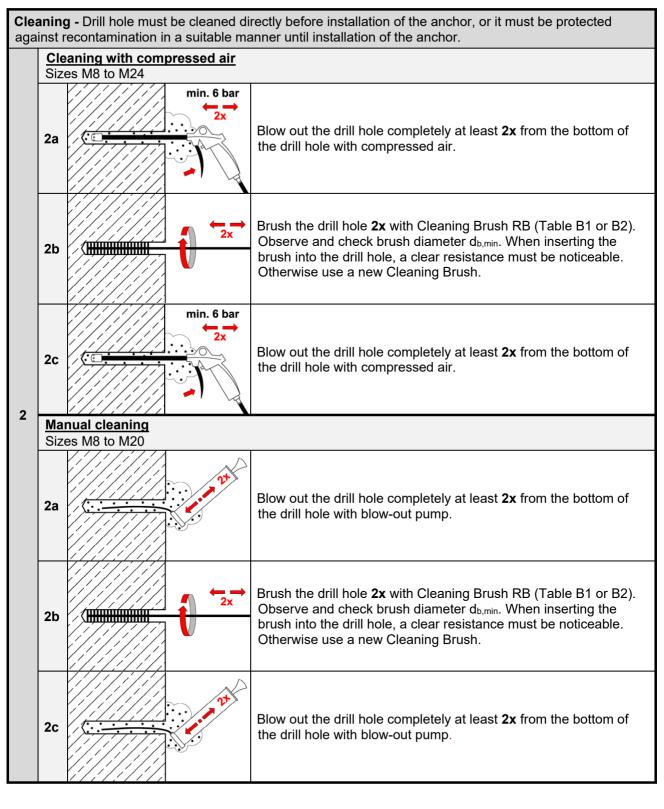


## **Chemical Anchor VZ**


#### Intended Use

Installation parameters - Internally threaded anchor rod VZ-IG

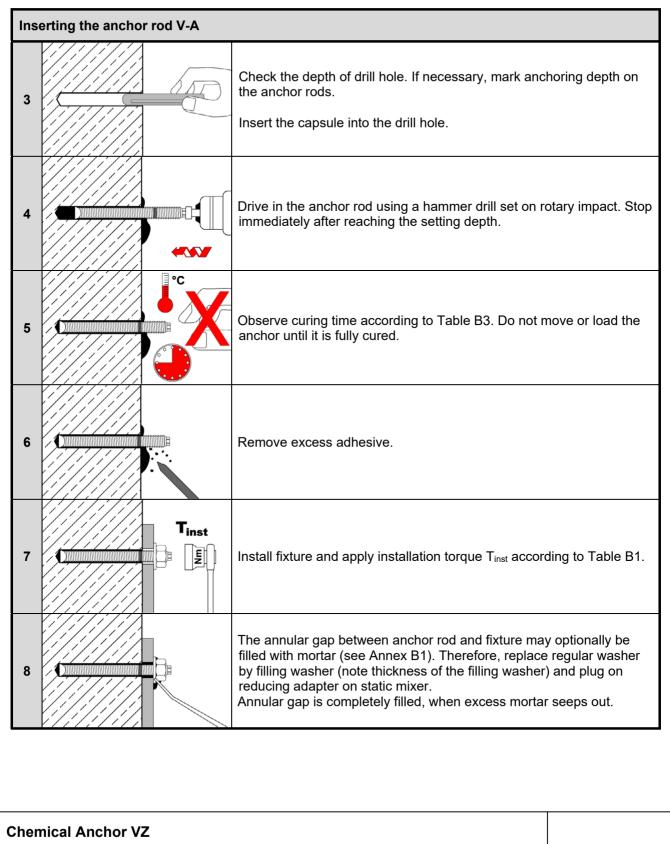
## Table B3: Curing time


| Concrete | temp  | erature | Minimum curing time |  |  |  |  |  |  |  |
|----------|-------|---------|---------------------|--|--|--|--|--|--|--|
| -20°C    | to    | -16°C   | 17 h                |  |  |  |  |  |  |  |
| -15°C    | to    | -11°C   | 7 h                 |  |  |  |  |  |  |  |
| -10°C    | to    | -6°C    | 4 h                 |  |  |  |  |  |  |  |
| -5°C     | to    | -1°C    | 3 h                 |  |  |  |  |  |  |  |
| 0°C      | to    | +4°C    | 50 min              |  |  |  |  |  |  |  |
| +5°C     | to    | +9°C    | 25 min              |  |  |  |  |  |  |  |
| +10°C    | to    | +19°C   | 15 min              |  |  |  |  |  |  |  |
| +20°C    | to    | +29°C   | 6 min               |  |  |  |  |  |  |  |
| +30°C    | to    | +40°C   | 6 min               |  |  |  |  |  |  |  |
| Capsule  | tempe | rature  | -15°C to +40°C      |  |  |  |  |  |  |  |

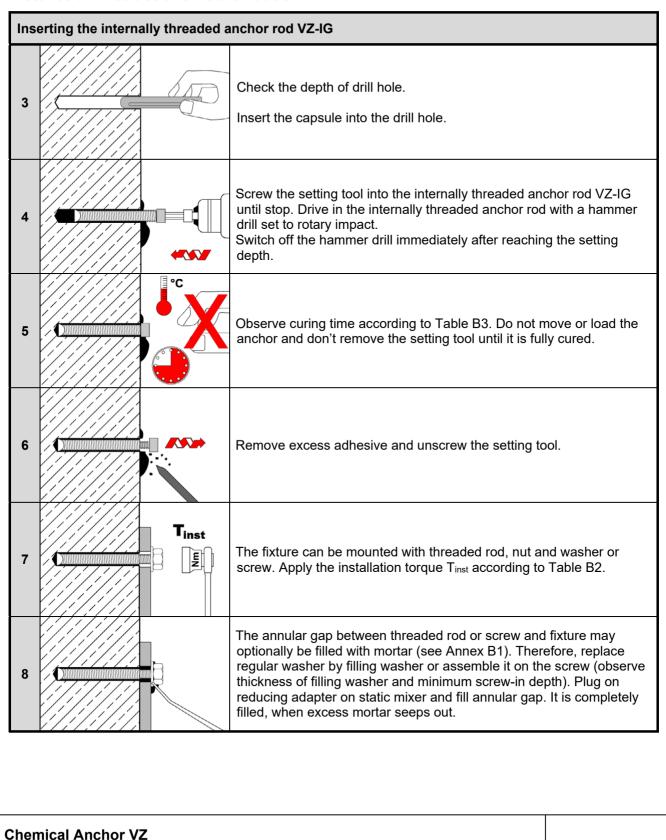
# Installation instructions



**Chemical Anchor VZ** 


## Installation instructions - continuation




#### **Chemical Anchor VZ**

Intended Use Installation instructions - Cleaning

## Installation instructions - continuation



## Installation instructions - continuation



Intended Use Installation instructions – Inserting internally threaded anchor rod VZ-IG

# Table C1: Characteristic steel resistance under tension load for anchor rods V-A

| Anchor rod V-A                 |                      |                   |      |     | M10 | M12 | M16 | M20 | M24 |
|--------------------------------|----------------------|-------------------|------|-----|-----|-----|-----|-----|-----|
| Steel failure                  |                      |                   |      |     |     |     |     |     |     |
| Characteristic resistanc       | e under tension load |                   |      |     |     |     |     |     |     |
| Steel,<br>zinc plated          | Property class 5.8   | N <sub>Rk,s</sub> | [kN] | 18  | 29  | 42  | 79  | 123 | 176 |
|                                | Property class 8.8   | N <sub>Rk,s</sub> | [kN] | 29  | 46  | 67  | 126 | 196 | 282 |
| Stainless steel /              | Property class 70    | N <sub>Rk,s</sub> | [kN] | 26  | 41  | 59  | 110 | 172 | 247 |
| High corrosion resistant steel | Property class 80    | N <sub>Rk,s</sub> | [kN] | 29  | 46  | 67  | 126 | 196 | 282 |
| Partial factor <sup>1)</sup>   |                      |                   |      |     |     |     |     |     |     |
| Steel,                         | Property class 5.8   | γMs,N             | [-]  | 1,5 |     |     |     |     |     |
| zinc plated                    | Property class 8.8   | γMs,N             | [-]  | 1,5 |     |     |     |     |     |
| Stainless steel /              | Property class 70    | γMs,N             | [-]  |     |     | 1,  | 5   |     |     |
| High corrosion resistant steel | Property class 80    | γMs,N             | [-]  | 1,6 |     |     |     |     |     |

<sup>1)</sup> In absence of other national regulations

## Table C2: Characteristic steel resistance under shear load for anchor rods V-A

| Anchor rod V-A                                         | Anchor rod V-A     |                                |      |      |    |     | M16 | M20 | M24 |  |  |
|--------------------------------------------------------|--------------------|--------------------------------|------|------|----|-----|-----|-----|-----|--|--|
| Characteristic resistances under shear load            |                    |                                |      |      |    |     |     |     |     |  |  |
| Steel failure without leve                             | r arm              |                                |      |      |    |     |     |     |     |  |  |
| Steel,                                                 | Property class 5.8 | V <sup>0</sup> Rk,s            | [kN] | 11   | 17 | 25  | 47  | 73  | 106 |  |  |
| zinc plated                                            | Property class 8.8 | $V^0_{Rk,s}$                   | [kN] | 15   | 23 | 34  | 63  | 98  | 141 |  |  |
| Stainless steel /<br>High corrosion resistant<br>steel | Property class 70  | $V^0_{Rk,s}$                   | [kN] | 13   | 20 | 30  | 55  | 86  | 123 |  |  |
|                                                        | Property class 80  | V <sup>0</sup> Rk,s            | [kN] | 15   | 23 | 34  | 63  | 98  | 141 |  |  |
| Steel failure <u>with</u> lever ar                     | m                  |                                |      |      |    |     |     |     |     |  |  |
| Steel,                                                 | Property class 5.8 | M <sup>0</sup> <sub>Rk,s</sub> | [Nm] | 19   | 37 | 65  | 166 | 325 | 561 |  |  |
| zinc plated                                            | Property class 8.8 | M <sup>0</sup> Rk,s            | [Nm] | 30   | 60 | 105 | 266 | 519 | 898 |  |  |
| Stainless steel /                                      | Property class 70  | M <sup>0</sup> <sub>Rk,s</sub> | [Nm] | 26   | 52 | 92  | 233 | 454 | 785 |  |  |
| High corrosion resistant steel                         | Property class 80  | M <sup>0</sup> Rk,s            | [Nm] | 30   | 60 | 105 | 266 | 519 | 898 |  |  |
| Partial factor <sup>1)</sup>                           |                    |                                |      |      |    |     |     |     |     |  |  |
| Steel,                                                 | Property class 5.8 | γMs,∨                          | [-]  |      |    | 1,2 | 25  |     |     |  |  |
| zinc plated                                            | Property class 8.8 | γмѕ,∨ [-] 1,25                 |      |      |    |     |     |     |     |  |  |
| Stainless steel /                                      | Property class 70  | γMs,V                          | [-]  | 1,25 |    |     |     |     |     |  |  |
| High corrosion resistant steel                         | Property class 80  | γ̂Ms,∨                         | [-]  |      |    | 1,3 | 33  |     |     |  |  |

<sup>1)</sup> In absence of other national regulations

## **Chemical Anchor VZ**

#### Performance

Characteristic steel resistance under tension and shear load for anchor rods V-A

## Table C3: Characteristic values of tension loads for anchor rods V-A

| Anchor rod V-A                                                                                               |                               | Anchor rod V-A          |                      |                                                  |        |        |                 | M20  | M24  |
|--------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|----------------------|--------------------------------------------------|--------|--------|-----------------|------|------|
| Steel failure                                                                                                |                               |                         |                      |                                                  |        |        |                 |      |      |
| Characteristic resista                                                                                       | nce under tension lo          | ad                      |                      |                                                  |        |        |                 |      | _    |
| Characteristic tension r                                                                                     | [kN]                          |                         |                      | see Ta                                           | ble C1 |        |                 |      |      |
| Partial factor                                                                                               |                               | γMs,N                   | [-]                  |                                                  |        | see Ta | ble C1          |      |      |
| Combined pull-out an                                                                                         | d concrete failure            |                         |                      |                                                  |        |        |                 |      |      |
| Characteristic bond re                                                                                       | esistance in <u>uncrack</u> e | <u>ed</u> conc          | rete C20/2           | 5                                                |        |        |                 |      |      |
| Temperature range I:                                                                                         | +24°C / +40°C                 | $	au_{Rk,ucr}$          | [N/mm²]              | 10,0                                             | 13,0   | 13,0   | 13,0            | 13,0 | 13,0 |
| Temperature range II:                                                                                        | +50°C / +80°C                 | $	au_{Rk,ucr}$          | [N/mm <sup>2</sup> ] | 8,5                                              | 11,0   | 11,0   | 11,0            | 11,0 | 11,0 |
| Increasing factors for $\tau_{F}$<br>$\tau_{Rk,ucr} = \psi_{c,ucr} \cdot \tau_{Rk,ucr}(C20)$                 |                               | Ψc,ucr                  | [-]                  | $\left(\frac{f_{ck}}{20}\right)^{0,17}$          |        |        |                 |      |      |
| Characteristic bond re                                                                                       | esistance in <u>cracked</u>   | concret                 | e C20/25             |                                                  |        |        |                 |      |      |
| Temperature range I:                                                                                         | +24°C / +40°C                 | $	au_{Rk,cr}$           | [N/mm²]              | 5,0                                              | 6,5    | 7,0    | 7,5             | 7,5  | 7,5  |
| Temperature range II:                                                                                        | +50°C / +80°C                 | $	au_{Rk,cr}$           | [N/mm²]              | 4,5                                              | 5,5    | 6,0    | 6,0             | 6,0  | 6,5  |
| Increasing factors for $\tau_{\rm f}$<br>$\tau_{\rm Rk,cr} = \psi_{\rm c,cr} \cdot \tau_{\rm Rk,cr} (C20/2)$ | ,                             | $\psi_{c,cr}$           | [-]                  | $\left(\frac{f_{ck}}{20}\right)^{0,14}$          |        |        |                 |      |      |
| Reduction factor $\psi^{0}_{sus}$                                                                            | in concrete C20/25            |                         |                      |                                                  |        |        |                 |      |      |
| Temperature range I:                                                                                         | +24°C / +40°C                 | $\psi^0{}_{\text{sus}}$ | [-]                  |                                                  |        | 0,     | 64              |      |      |
| Temperature range II:                                                                                        | +50°C / +80°C                 | $\psi^0{}_{sus}$        | [-]                  |                                                  |        | 0,     | 63              |      |      |
| Concrete cone failure                                                                                        |                               |                         |                      |                                                  |        |        |                 |      |      |
| Factor for                                                                                                   | uncracked concrete            | kucr,N                  | [-]                  |                                                  |        | 11     | l,0             |      |      |
|                                                                                                              | cracked concrete              | $k_{cr,N}$              | [-]                  |                                                  |        | 7      | ,7              |      |      |
| Edge distance                                                                                                |                               | Ccr,N                   | [mm]                 |                                                  |        | 1,5    | h <sub>ef</sub> |      |      |
| Spacing                                                                                                      |                               | Scr,N                   | [mm]                 |                                                  |        | 3      | h <sub>ef</sub> |      |      |
| Splitting failure                                                                                            |                               |                         |                      |                                                  |        |        |                 |      |      |
|                                                                                                              | h/h <sub>ef</sub> ≥ 2,0       |                         |                      |                                                  |        |        | h <sub>ef</sub> |      |      |
| Edge distance                                                                                                | 2,0> h/h <sub>ef</sub> > 1,3  | C <sub>cr,sp</sub>      | [mm]                 | 2 • h <sub>ef</sub> (2,5 - h / h <sub>ef</sub> ) |        |        |                 |      |      |
|                                                                                                              | h/h <sub>ef</sub> ≤ 1,3       |                         |                      |                                                  |        |        | h <sub>ef</sub> |      |      |
| Spacing                                                                                                      |                               | S <sub>cr,sp</sub>      | [mm]                 | 2 c <sub>cr,sp</sub>                             |        |        |                 |      |      |
| Installation factor                                                                                          |                               | $\gamma_{ m inst}$      | [-]                  |                                                  |        | 1      | ,2              |      |      |

# **Chemical Anchor VZ**

Performance

Characteristic values under tension load for anchor rods V-A

## Table C4: Characteristic values of shear loads for anchor rods V-A

|                                        |                  | L    |                  |     |        |         |     |     |  |  |
|----------------------------------------|------------------|------|------------------|-----|--------|---------|-----|-----|--|--|
| Anchor rod V-A                         | M8               | M10  | M12              | M16 | M20    | M24     |     |     |  |  |
| Steel failure <u>without</u> lever arm |                  |      |                  |     |        |         |     |     |  |  |
| Characteristic resistance              | $V^0_{Rk,s}$     | [kN] |                  |     | see Ta | able C2 |     |     |  |  |
| Ductility factor                       | <b>k</b> 7       | [-]  |                  |     | 1      | ,0      |     |     |  |  |
| Partial factor                         | γMs,∨            | [-]  | see Table C2     |     |        |         |     |     |  |  |
| Steel failure <u>with</u> lever arm    |                  |      |                  |     |        |         |     |     |  |  |
| Characteristic bending resistance      | $M^0_{Rk,s}$     | [Nm] |                  |     | see Ta | able C2 |     |     |  |  |
| Partial factor                         | γMs,V            | [-]  |                  |     | see Ta | able C2 |     |     |  |  |
| Concrete pry-out failure               |                  |      |                  |     |        |         |     |     |  |  |
| Pry-out factor                         | <b>k</b> 8       | [-]  |                  |     | 2      | ,0      |     |     |  |  |
| Concrete edge failure                  |                  |      |                  |     |        |         |     |     |  |  |
| Effective length of anchor             | lf               | [mm] | 80               | 90  | 110    | 125     | 170 | 210 |  |  |
| Outside diameter of anchor             | d <sub>nom</sub> | [mm] | 8 10 12 16 20 24 |     |        |         |     | 24  |  |  |
| Installation factor                    | γinst            | [-]  |                  |     | 1      | ,0      | 1,0 |     |  |  |

## **Chemical Anchor VZ**

# Table C5: Characteristic values of tension loads for anchor rods V-A under seismic action, performance category C1

| Anchor rod V-A                               | M8                   | M10           | M12       | M16                               | M20 | M24 |     |     |     |  |
|----------------------------------------------|----------------------|---------------|-----------|-----------------------------------|-----|-----|-----|-----|-----|--|
| Steel failure                                |                      |               |           |                                   |     |     |     |     |     |  |
| Characteristic resistance under tension load |                      |               |           |                                   |     |     |     |     |     |  |
| Characteristic tension resis                 | N <sub>Rk,s,C1</sub> | [kN]          |           | N <sub>Rk,s</sub><br>see Table C1 |     |     |     |     |     |  |
| Partial factor                               |                      | γMs,N         | [-]       | see Table C1                      |     |     |     |     |     |  |
| Combined pull-out and co                     | oncrete failure      |               |           |                                   |     |     |     |     |     |  |
| Characteristic bond resis                    | tance in concrete    | C20/25 1      | to C50/60 |                                   |     |     |     |     |     |  |
| Temperature range I:                         | +24°C / +40°C        | $	au_{Rk,C1}$ | [N/mm²]   | 4,5                               | 5,5 | 6,0 | 6,0 | 7,5 | 7,0 |  |
| Temperature range II:                        | +50°C / +80°C        | $	au_{Rk,C1}$ | [N/mm²]   | 4,0 4,5 5,5 5,0 6,0               |     |     |     | 5,5 |     |  |
| Installation factor γ <sub>inst</sub> [-]    |                      |               |           | 1,2                               |     |     |     |     |     |  |

# Table C6: Characteristic values of shear loads for anchor rods V-A under seismic action, performance category C1

| Anchor rod V-A                                         | M8                      | M10                  | M12  | M16          | M20  | M24  |      |      |       |  |  |
|--------------------------------------------------------|-------------------------|----------------------|------|--------------|------|------|------|------|-------|--|--|
| Steel failure without lever arm                        |                         |                      |      |              |      |      |      |      |       |  |  |
| Characteristic resistance under shear load             |                         |                      |      |              |      |      |      |      |       |  |  |
| Steel,                                                 | Property class 5.8      | $V_{Rk,s,C1}$        | [kN] | 9,0          | 14,3 | 20,7 | 36,3 | 56,2 | 81,5  |  |  |
| zinc plated                                            | Property class 8.8      | V <sub>Rk,s,C1</sub> | [kN] | 12,0         | 19,0 | 27,7 | 48,4 | 75,5 | 109,3 |  |  |
| Stainless steel /<br>High corrosion<br>resistant steel | Property class 70       | V <sub>Rk,s,C1</sub> | [kN] | 10,5         | 16,6 | 24,2 | 42,3 | 66,0 | 94,7  |  |  |
|                                                        | Property class 80       | $V_{Rk,s,C1}$        | [kN] | 12,0         | 19,0 | 27,7 | 48,4 | 75,5 | 108,7 |  |  |
| Partial factor                                         |                         | γMs,∨                | [-]  | see Table C2 |      |      |      |      |       |  |  |
| Footor for encharages                                  | <b>with</b> annular gap | $lpha_{gap}$         | [-]  | 0,5          |      |      |      |      |       |  |  |
| Factor for anchorages                                  | without annular gap     | $lpha_{gap}$         | [-]  | 1,0          |      |      |      |      |       |  |  |
| Installation factor                                    |                         |                      | [-]  | 1,0          |      |      |      |      |       |  |  |

## **Chemical Anchor VZ**

Performance Characteristic values under seismic action, performance category C1 for anchor rods V-A

## Table C7: Characteristic steel resistance under tension load for internally threaded anchor rods VZ-IG

| Internally threaded anchor rod                                                                                    |                               |                         |                      |                                                                  | IG-M 8                                  | IG-M 10 | IG-M 12 | IG-M 16 |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|----------------------|------------------------------------------------------------------|-----------------------------------------|---------|---------|---------|--|--|
| Steel failure                                                                                                     |                               |                         |                      | <u>.</u>                                                         | 1                                       | 1       | 1       | 1       |  |  |
| Characteristic                                                                                                    | Property class 5.8            | N <sub>Rk,s</sub>       | [kN]                 | 10                                                               | 17                                      | 29      | 42      | 76      |  |  |
| resistance,<br>steel, zinc plated                                                                                 | Property class 8.8            | N <sub>Rk,s</sub>       | [kN]                 | 16                                                               | 27                                      | 46      | 67      | 121     |  |  |
| Partial factor 1)                                                                                                 |                               | γMs,N                   | [-]                  |                                                                  | 1                                       | 1,5     | 1       | 1       |  |  |
| Characteristic<br>resistance, stainless<br>steel A4 / HCR                                                         | Property class 70             | N <sub>Rk,s</sub>       | [kN]                 | 14                                                               | 26                                      | 41      | 59      | 110     |  |  |
| Partial factor 1)                                                                                                 |                               | γMs,N                   | [-]                  |                                                                  |                                         | 1,87    | •       | •       |  |  |
| Combined pull-out an                                                                                              | d concrete failure            |                         |                      |                                                                  |                                         |         |         |         |  |  |
| Characteristic bond r                                                                                             | esistance in <u>uncrac</u>    | <u>ked</u> cor          | ncrete C2            | 0/25                                                             |                                         |         |         |         |  |  |
| Temperature range I:                                                                                              | +24°C / +40°C                 | $	au_{Rk,ucr}$          | [N/mm²]              | 13,0                                                             | 13,0                                    | 13,0    | 13,0    | 13,0    |  |  |
| Temperature range II:                                                                                             | +50°C / +80°C                 | $	au_{Rk,ucr}$          | [N/mm²]              | 11,0                                                             | 11,0                                    | 11,0    | 11,0    | 11,0    |  |  |
| Increasing factors for $\tau_{Rk,ucr}$<br>$\tau_{Rk,ucr} = \psi_{c,ucr} \cdot \tau_{Rk,ucr} (C20/25)$             |                               | Ψc,ucr                  | [-]                  |                                                                  | $\left(\frac{f_{ck}}{20}\right)^{0,17}$ |         |         |         |  |  |
| Characteristic bond r                                                                                             | esistance in <u>cracke</u>    | <u>d</u> concr          | ete C20/2            | 5                                                                |                                         |         |         |         |  |  |
| Temperature range I:                                                                                              | +24°C / +40°C                 | τ <sub>Rk,cr</sub>      | [N/mm²]              | 6,5                                                              | 7,0                                     | 7,5     | 7,5     | 7,5     |  |  |
| Temperature range II:                                                                                             | +50°C / +80°C                 | $	au_{Rk,cr}$           | [N/mm²]              | 5,5                                                              | 6,0                                     | 6,0     | 6,0     | 6,5     |  |  |
| Increasing factors for τ <sub>Rk,cr</sub><br>τ <sub>Rk,cr</sub> = Ψ <sub>c,cr</sub> • τ <sub>Rk,cr</sub> (C20/25) |                               | Ψc,cr                   | [-]                  | $\left(rac{\mathrm{f}_{\mathrm{ck}}}{\mathrm{20}} ight)^{0,14}$ |                                         |         |         |         |  |  |
| Reduction factor ψ <sup>0</sup> sus                                                                               | ₅ in concrete C20/25          |                         | 1                    |                                                                  |                                         |         |         |         |  |  |
| Temperature range I:                                                                                              | +24°C / +40°C                 | $\psi^0$ sus            | [-]                  | 0,64                                                             |                                         |         |         |         |  |  |
| Temperature range II:                                                                                             | +50°C / +80°C                 | $\psi^0{}_{\text{sus}}$ | [-]                  | 0,63                                                             |                                         |         |         |         |  |  |
| Concrete cone failure                                                                                             |                               |                         |                      |                                                                  |                                         |         |         |         |  |  |
| Footor for                                                                                                        | uncracked concrete            | k <sub>ucr,N</sub>      | [-]                  |                                                                  |                                         | 11,0    |         |         |  |  |
| Factor for -                                                                                                      | cracked concrete              | k <sub>cr,N</sub>       | [-]                  | 7,7                                                              |                                         |         |         |         |  |  |
| Edge distance                                                                                                     |                               | C <sub>cr,N</sub>       | [mm]                 | 1,5 h <sub>ef</sub>                                              |                                         |         |         |         |  |  |
| Spacing                                                                                                           |                               | Scr,N                   | [mm]                 | 3 h <sub>ef</sub>                                                |                                         |         |         |         |  |  |
| Splitting failure                                                                                                 |                               |                         |                      |                                                                  |                                         |         |         |         |  |  |
| Edge distance                                                                                                     | h/h <sub>ef</sub> ≥ 2,0       |                         |                      | 1,0 h <sub>ef</sub>                                              |                                         |         |         |         |  |  |
|                                                                                                                   | 2,0 > h/h <sub>ef</sub> > 1,3 | C <sub>cr,sp</sub>      | [mm]                 | 2 • h <sub>ef</sub> (2,5 - h / h <sub>ef</sub> )                 |                                         |         |         |         |  |  |
| h/h <sub>ef</sub> ≤ 1,3                                                                                           |                               |                         |                      | 2,4 h <sub>ef</sub>                                              |                                         |         |         |         |  |  |
| Spacing                                                                                                           | Scr,sp                        | [mm]                    | 2 c <sub>cr,sp</sub> |                                                                  |                                         |         |         |         |  |  |
| Installation factor                                                                                               |                               | γinst                   | [-]                  |                                                                  |                                         | 1,2     |         |         |  |  |

#### **Chemical Anchor VZ**

#### Performance

Characteristic values under tension load for internally threaded anchor rods VZ-IG

## Table C8: Characteristic steel resistance under shear load for internally threaded anchor rods VZ-IG

| Internally threaded anch          | IG-M 6               | IG-M 8                         | IG-M 10 | IG-M 12 | IG-M 16 |      |     |     |  |
|-----------------------------------|----------------------|--------------------------------|---------|---------|---------|------|-----|-----|--|
| Steel failure <u>without</u> leve | er arm <sup>1)</sup> |                                | I       |         |         |      |     |     |  |
| Steel,<br>zinc plated             | Property class 5.8   | V <sup>0</sup> Rk,s            | [kN]    | 6       | 10      | 17   | 25  | 45  |  |
|                                   | Property class 8.8   | V <sup>0</sup> <sub>Rk,s</sub> | [kN]    | 8       | 14      | 23   | 34  | 60  |  |
| Stainless steel A4 / HCR          | Property class 70    | $V^0_{Rk,s}$                   | [kN]    | 7       | 13      | 20   | 30  | 55  |  |
| Ductility factor                  |                      |                                | [-]     |         | 1,0     |      |     |     |  |
| Steel failure <u>with</u> lever a |                      |                                |         |         |         |      |     |     |  |
| Steel,<br>zinc plated             | Property class 5.8   | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]    | 8       | 19      | 37   | 66  | 167 |  |
|                                   | Property class 8.8   | M <sup>0</sup> Rk,s            | [Nm]    | 12      | 30      | 60   | 105 | 267 |  |
| Stainless steel A4 / HCR          | Property class 70    | M <sup>0</sup> Rk,s            | [Nm]    | 11      | 26      | 53   | 92  | 234 |  |
| Partial factor <sup>2)</sup>      |                      |                                |         |         |         |      |     |     |  |
| Steel,                            | Property class 5.8   | γMs,V                          | [-]     |         |         | 1,25 |     |     |  |
| zinc plated                       | Property class 8.8   | γMs,V                          | [-]     | 1,25    |         |      |     |     |  |
| Stainless steel A4 / HCR          | Property class 70    | γMs,V                          | [-]     |         |         | 1,56 |     |     |  |
| Concrete pry-out failure          |                      |                                |         |         |         |      |     |     |  |
| Pry-out factor                    |                      | k <sub>8</sub>                 | [-]     |         |         | 2,0  |     |     |  |
| Concrete edge failure             |                      |                                |         |         |         |      |     |     |  |
| Effective length of fastener      |                      | lf                             | [mm]    | 90      | 110     | 125  | 170 | 210 |  |
| Outside diameter of fastener      |                      | d <sub>nom</sub>               | [mm]    | 10      | 12      | 16   | 20  | 24  |  |
| Installation factor               |                      |                                | [-]     |         |         | 1,0  |     |     |  |

<sup>1)</sup> Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

<sup>2)</sup> In absence of other national regulations

#### **Chemical Anchor VZ**

Performance Characteristic values under shear load for internally threaded anchor rods VZ-IG

# Table C9: Displacements under tension load

| Anchor size                                            |                         |              | M8    | M10<br>IG-M6 | M12<br>IG-M8 | M16<br>IG-M10 | M20<br>IG-M12 | M24<br>IG-M16 |  |
|--------------------------------------------------------|-------------------------|--------------|-------|--------------|--------------|---------------|---------------|---------------|--|
| Displacement factor <sup>1)</sup> fo                   |                         |              |       |              |              |               |               |               |  |
| Displacement                                           | $\delta_{N0}$ -factor   | [mm/(N/mm²)] | 0,015 | 0,031        | 0,035        | 0,015         | 0,046         | 0,060         |  |
|                                                        | δ <sub>N∞</sub> -factor | [mm/(N/mm²)] | 0,085 | 0,067        | 0,067        | 0,067         | 0,067         | 0,067         |  |
| Displacement factor <sup>1)</sup> for cracked concrete |                         |              |       |              |              |               |               |               |  |
| Displacement                                           | $\delta_{N0}$ -factor   | [mm/(N/mm²)] | 0,046 | 0,038        | 0,024        | 0,008         | 0,024         | 0,133         |  |
|                                                        | δ <sub>N∞</sub> -factor | [mm/(N/mm²)] | 0,192 | 0,142        | 0,090        | 0,104         | 0,082         | 0,069         |  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau; \qquad \tau: \text{ acting bond stress for tension}$ 

 $\delta_{N\infty} = \delta_{N\infty}$ - factor  $\cdot \tau$ ;

# Table C10: Displacements under shear load

| Anchor size                       |                         |           | M8   | M10<br>IG-M6 | M12<br>IG-M8 | M16<br>IG-M10 | M20<br>IG-M12 | M24<br>IG-M16 |
|-----------------------------------|-------------------------|-----------|------|--------------|--------------|---------------|---------------|---------------|
| Displacement factor <sup>1)</sup> |                         |           |      |              |              |               |               |               |
| Displacement                      | $\delta_{V0}$ -factor   | [mm/(kN)] | 0,06 | 0,06         | 0,05         | 0,04          | 0,04          | 0,03          |
| Displacement                      | δ <sub>V∞</sub> -factor | [mm/(kN)] | 0,09 | 0,08         | 0,08         | 0,06          | 0,06          | 0,05          |

<sup>1)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor  $\cdot$  V; V: acting shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor  $\cdot$  V;

## **Chemical Anchor VZ**

**Performance** Displacements