

IZJAVA O LASTNOSTIH

DoP Št.: MKT-1.1-200 sl

♦ Enotna identifikacijska oznaka tipa proizvoda: Wedge sidro B

Predvidena uporaba: Mehansko sidro za sidranje v betonu,

glej Priloga/Annex B

♦ Proizvajalec: MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

♦ Sistemi ocenjevanja in preverjanja

nespremenljivosti lastnosti:

♦ Evropski ocenjevalni dokument: EAD 330232-01-0601

Evropska tehnična ocena: ETA-01/0013, 17.09.2020

Organ za tehnično ocenjevanje: DIBt, Berlin

Priglašeni organi: NB 2873 – Technische Universität Darmstadt

♦ Navedene lastnosti:

Bistvene značilnosti	Lastnosti			
Mehanska odpornost in stabilnost (BWR 1)				
Značilen upor pri nateznem stresu (statični in kvazi-statični učinki)	Priloga/Annex B4, C1, C2			
Značilen odpor pri bočnem stresu (statični in kvazi-statični učinki)	Priloga/Annex C3			
Premiki (statični in kvazi-statični učinki)	Priloga/Annex B1, C4			
Značilna upornost in premiki za kategorijo potresne zmogljivosti C1+C2	lastnost ni določena			
Varnost pri požaru (BWR 2)				
Ogenj vedenje	Razred A1			
Požarna odpornost	lastnost ni določena			

Lastnosti proizvoda, navedenega zgoraj, so v skladu z navedenimi lastnostmi. Za izdajo te izjave o lastnostih je v skladu z Uredbo (EU) št. 305/2011 odgovoren izključno proizvajalec, naveden zgoraj.

Podpisal za in v imenu proizvajalca:

Stefan Weustenhagen (Generalni direktor)

Weilerbach, 23.10.2020

Dipl.-Ing. Detlef Bigalke (Vodja razvoja izdelkov)

Izvirnik te izjave o uspehu je bil napisan v nemškem jeziku. V primeru odstopanj v prevodu je nemška različica veljavna.

Specifications of intended use

B/B fvz/	B sh / B A2 / B A4 / B HCR	М6	M8	M10	M12	M16	M20
В	electroplated	✓	✓	✓	✓	✓	✓
B fvz	hot-dip galvanized	-	✓	✓	✓	✓	✓
B sh	sherardized	✓	√	✓	✓	✓	✓
B A2	stainless steel	✓	✓	✓	✓	✓	✓
B A4	stainless steel	✓	✓	✓	✓	✓	✓
B HCR	high corrosion resistant steel	✓	✓	✓	✓	✓	✓
All	static or quasi-static action			٧			
versions	uncracked concrete			٧			

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Anchor version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A.2
B A2	CRC II
B A4	CRC III
B HCR	CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages are designed according to EN 1992-4:2018 or TR 055

Installation:

- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR	
Intended use Specifications	Annex B1

Installation parameters Effective embedment depths hef.1 Tinst h_{ef,1} t_{fix 1} h_{nom.1} h_{1,1} Effective embedment depths hef,2 t_{fix 2} h_{ef 2} h_{nom 2} h_{1,2} Effective embedment depths hef,3 h_{ef 3} h_{nom 3} h_{1,3} Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR Annex B2 Intended use

Installation parameters

Table B1: Installation parameters

Anch	Anchor size				М8	M10	M12	M16	M20
Nom	Nominal drill hole diameter d ₀ =		[mm]	6	8	10	12	16	20
Cuttii	ng diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
enb.	В	T _{inst} =	[Nm]	8	15	30	50	100	200
on tor	B fvz	T _{inst} =	[Nm]	ı	15	30	40	90	120
nstallation torque	B sh	T _{inst} =	[Nm]	5	15	30	40	90	120
Inst	B A2 / B A4 / B HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
	eter of clearance hole e fixture	$d_f \! \leq \!$	[mm]	7	9	12	14	18	22
Emb	edment depth h _{ef,1}								
Effec	tive embedment depth	$h_{\text{ef},1} \geq$	[mm]	30	35	42	50	64	78
Dept	h of drill hole	$h_{1,1}\geq$	[mm]	45	55	65	75	95	110
Emb	edment depth	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Emb	edment depth h _{ef,2}								
Effec	tive embedment depth	$h_{\text{ef},2} \geq$	[mm]	40	44	48	65	82 (80)1)	100
Dept	h of drill hole	$h_{1,2}\geq \\$	[mm]	55	65	70	90	110	130
Emb	edment depth	$h_{\text{nom},2} \geq$	[mm]	49	56	62	82	102	121
Emb	edment depth h _{ef,3}								
Effec	tive embedment depth	$h_{\text{ef},3} \geq$	[mm]	60	70	80	100	120	115
Dept	h of drill hole	h _{1,3} ≥	[mm]	75	91	102	125	148	145
Emb	edment depth	h _{nom,3} ≥	[mm]	69	82	94	117	140	136

¹⁾ Anchor version B A2 / B A4 / B HCR

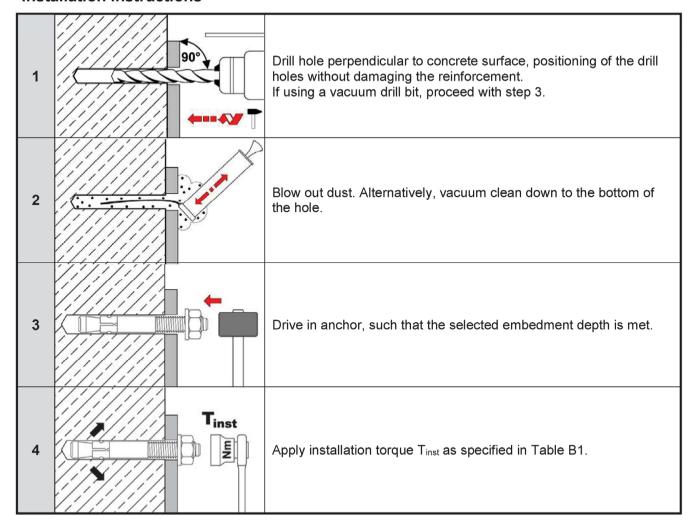
Table B2: Minimum spacings and edge distances for B / B fvz1) / B sh

Anchor size			M6	M8	M10	M12	M16	M20			
Embedment depth hef,1	Embedment depth h _{ef,1}										
Minimum member thickness	h_{min}	[mm]	80	80	100	100	130	160			
Minimum spacing	Smin	[mm]	35	40	55	100	100	140			
Minimum edge distance	C _{min}	[mm]	40	45	65	100	100	140			
Embedment depth h _{ef,2}											
Minimum member thickness	h_{min}	[mm]	100	100	100	130	170	200			
Minimum spacing	Smin	[mm]	35	40	55	75	90	105			
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125			
Embedment depth h _{ef,3}											
Minimum member thickness	h _{min}	[mm]	120	126	132	165	208	215			
Minimum spacing	Smin	[mm]	35	40	55	75	90	105			
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125			

¹⁾ Anchor version B fvz: M8-M20

Table B3: Minimum spacings and edge distances for B A2 / B A4 / B HCR

Anchor size			М6	M8	M10	M12	M16	M20
Embedment depth h _{ef,1}								
Minimum member thickness	h_{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	60	55	100	110	140
Minimum edge distance	C _{min}	[mm]	40	60	65	100	110	140
Embedment depth h _{ef,2}								
Minimum member thickness	h_{min}	[mm]	100	100	100	130	160	200
NAL discourse and a single	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	150
Minimum adap diatama	C _{min}	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180
Embedment depth h _{ef,3}								
Minimum member thickness	h_{min}	[mm]	120	126	132	165	200	215
Minimum	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	150
Minimum edge distance	C _{min}	[mm]	35	45	55	70	80	100
	for s ≥	[mm]	60	110	80	100	140	180


Intermediate values by linear interpolation

Intended use

Minimum spacings and edge distances

Annex B4

Installation instructions

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Table C1: Characteristic values for tension loads for B / B fvz¹⁾ / B sh

Anchor size				М6	М8	M10	M12	M16	M20
Installation factor				1	,0				
Steel failure									
Characteristic resistance		$N_{Rk,s}$	[kN]	8,7	15,3	26	35	65	107
Partial factor		γMs	[-]		1,	5		1	,6
Pull-out									
Characteristic resistance	for h _{ef,1}	N _{Rk,p}	[kN]	6,5 ²⁾	10,2 2)	13,4	17,4	25,2	33,9
in uncracked concrete	for h _{ef,2}	N _{Rk,p}	[kN]	10	13	16,4	25,8	36,5	49,2
C20/25	for h _{ef,3}	N _{Rk,p}	[kN]	10	13	16,4	26	40	55
Increasing factor for N _{Rk,p}		ψc	[-]		$\left(\frac{f_{ck}}{20}\right)^{0,5}$		$\left(\frac{f_{ck}}{20}\right)^{0,29}$	$\left(\frac{f_{ck}}{20}\right)^{0,33}$	$\left \left(\frac{f_{ck}}{20} \right)^{0.5} \right $
Splitting									
Characteristic resistance in uncracked concrete C20/2	25	[kN]	min [N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾]						
Embedment depth h _{ef,1}		'							
Spacing		S _{cr,sp}	[mm]	180	210	230	240	320	400
Edge distance		C _{cr,sp}	[mm]	90	105	115	120	160	200
Embedment depth h _{ef,2}									
Spacing		S _{cr,sp}	[mm]	160	220	240	330	410	500
Edge distance		C cr,sp	[mm]	80	110	120	165	205	250
Embedment depth h _{ef,3}									
Spacing		S _{cr,sp}	[mm]	360	240	480	600	720	690
Edge distance		C cr,sp	[mm]	180	210	240	300	360	345
Concrete cone failure									
		$\text{for } h_{\text{ef},1}\!\geq\!$	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Effective embedment depth		$\text{for } h_{\text{ef},2} \! \geq \!$	[mm]	40	44	48	65	82	100
		for $h_{\text{ef,3}} \ge$	[mm]	60	70	80	100	120	115
Spacing	[mm]			3 h _e	f (1,2,3)				
Edge distance	[mm]	1,5 h _{ef (1,2,3)}							
Factor uncracked	concrete	k ucr,N	[-]			11	1,0		
cracked co	ncrete	$k_{cr,N}$	[-]		No pe	erforma	nce asse	ssed	

¹⁾ Anchor version B fvz: M8-M20

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

 $^{^{3)}}$ $N^0_{Rk,c}$ according to EN 1992-4:2018

Table C2: Characteristic values for tension loads for B A2 / B A4 / B HCR

Partial factor	Anchor size				М6	M8	M10	M12	M16	M20		
Steel failure	Installation factor		γinst	[-]			1	,0				
Characteristic resistance	Steel failure		•									
Partial factor YMS [-] 1,50 1,6 1,6	Characteristic resistance		$N_{Rk,s}$	[kN]	10	18	30	44	88	134		
Pull-out	Partial factor			[-]			1,50		•	1,68		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pull-out											
Characteristic resistance in uncracked concrete C20/25 for hef.2 hr.ks.p RRk.p (kN) 8 15 16,4 25 35,2 49 Increasing factor for NRk.p y/C [-] (fek) 0,0.5 25 42 66 Splitting Characteristic resistance in uncracked concrete C20/25 N°Rk.sp [kN] min [NRk.p.; N°Rk.c²] 1 Embedment depth hef.1 Spacing Scr.sp [mm] 180 18		for h _{ef,1}	N _{Rk,p}	[kN]	6,5 ¹⁾	9 1)	12	17,4	25,2	33,9		
Increasing factor for N _{Rk.p} KN R RN RN RN RN RN RN		for h _{ef,2}		[kN]	8	15	16,4	25	35,2	49,2		
Increasing factor for N _{Rk,p}		for h _{ef,3}	$N_{Rk,p}$	[kN]	8	15	16,4	25	42	60		
Characteristic resistance in uncracked concrete C20/25 N⁰Rk.sp [kN] min [NRk.p; N⁰Rk.c²] Embedment depth hef,1 socr.sp [mm] 180 190 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90	Increasing factor for N _{Rk,p}		ψο	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5				
Case 1 Characteristic resistance in uncracked concrete C20/25 NO R.k.sp [RN] 180 18	Splitting											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Characteristic resistance in		N ⁰ Rk,sp	[kN]			min [N _{Rk} ,	p; N ⁰ Rk,c ²⁾]			
	Embedment depth h _{ef,1}											
	Spacing		S _{cr,sp}	[mm]	180	180	180	180	180	180		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Edge distance	C _{cr,sp}	[mm]	90	90	90	90	90	90			
	Embedment depth hef,2					•	•	•	•	•		
	The higher one of the decisive	e resistan	ces of	Case 1	and Case	2 is applic	able					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	=											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			N ⁰ Rk,sp	[kN]	6	9	12	20	30	40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			S _{cr,sp}	[mm]			3	h _{ef}		•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Edge distance		C _{cr,sp}	[mm]			1,5	h _{ef}				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Increasing factor for N ⁰ _{Rk,sp}		ψc	[-]			$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{100}\right)^{0.5}$				
	Case 2											
	Spacing		Scr,sp	[mm]	160	220	240	340	410	560		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			C cr,sp	[mm]	80	110	120	170	205	280		
			Scr,sp	[mm]		240				690		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			C _{cr,sp}	[mm]	180	210	240	300	360	345		
	Concrete cone failure											
										78		
Spacing s _{cr,N} [mm] 3 h _{ef} Edge distance c _{cr,N} [mm] 1,5 h _{ef} uncracked concrete k _{ucr,N} [-] 11,0	Effective Embedment depth									100		
Edge distance c _{cr,N} [mm] 1,5 h _{ef} uncracked concrete k _{ucr,N} [-] 11,0		foi	^ h _{ef,3} ≥		60	70			120	115		
uncracked concrete k _{ucr,N} [-] 11,0												
I Factor	_ <u>`</u>		C _{cr,N}		1,5 h _{ef}							
	Factor uncracked co	oncrete	k _{ucr,N}				11	1,0				
cracked concrete k _{cr,N} [-] No performance assessed	cracked co	cracked concrete k _{cr,N}					No performance assessed					

¹⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only</p>

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Performance

Characteristic values for tension loads for B A2 / B A4 / B HCR

Annex C2

²⁾ N⁰_{Rk,c} according to EN 1992-4:2018

Table C3: Characteristic values for shear loads

Anchor size	Anchor size					M8	M10	M12	M16	M20
Installation factor			γinst	[-]	1,0					
Steel failure without le	ever arm									
Characteristic	B / B fvz¹) / B sh		$V^0_{Rk.s}$	[kN]	5	11	17	25	44	69
resistance	B A2 / B A4	B A2 / B A4 / B HCR		[kN]	7	12	19	27	50	86
Ductility factor			k ₇	[-]				1,0		
Steel failure with leve	r arm									
Characteristic bending	B / B fvz ¹⁾ /	B sh	M^0 Rk.s	[Nm]	9	23	45	78	186	363
resistance	B A2 / B A4 / B HCR		M^0 Rk,s	[Nm]	10	24	49	85	199	454
Partial factor for	B / B fvz ¹⁾ / B sh		γMs	[-]	1,25 1,				1,	33
$V^{0}_{Rk,s}$ and $M^{0}_{Rk,s}$	B A2 / B A4	γMs	[-]	1,25					1,4	
Concrete pry-out failu	re									
Factor for h ef	B / B fvz ¹⁾ /	B sh	k 8	[-]	1,0	2,3	2,5	2,9	2,8	3,1
Factor for flef	B A2 / B A4	I / B HCR	k 8	[-]	1,0	2,3	2,8	2,8	3,0	3,3
Concrete edge failure										
		for h ef,1	I _f	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Effective length of anch loading	Effective length of anchor in shear loading		lf	[mm]	40	44	48	65	82 (80) ³⁾	100
		for h _{ef,3}	lf	[mm]	60	70	80	100	120	115
Outside diameter of and	chor		d_{nom}	[mm]	6	8	10	12	16	20

¹⁾ Anchor version B fvz: M8-M20

²⁾ Restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

³⁾ Anchor version B A2 / B A4 / B HCR

 Table C5:
 Displacements under tension loads

Anchor size			М6	M8	M10	M12	M16	M20
Embedment depth h _{ef,1}								
B / B fvz ¹⁾ / B sh								
Tension load	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6
Displacement	δνο	[mm]	0,3			0,4		
Displacement	δη∞	[mm]	0,6			1,8		
B A2 / B A4 / B HCR								
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Displacement	δνο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
Displacement	δ _{N∞}	[mm]			1,3			2,9
Embedment depth hef,2 and hef,3								
B / B fvz¹) / B sh								
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8
Diamlacament	δηο	[mm]	0,4			0,5		
Displacement	δ _{N∞}	[mm]	0,7			2,3		
B A2 / B A4 / B HCR								
Tension load	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Displacement	δνο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
Displacement	δ _{N∞}	[mm]			1,8			4,2

¹⁾ Anchor version B fvz: M8-M20

 Table C6:
 Displacements under shear loads

Anchor size			М6	M8	M10	M12	M16	M20
B / B fvz ¹⁾ / B sh								
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement -	δνο	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	δν∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
B A2 / B A4 / B HCR								
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement -	δνο	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	δ∨∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Anchor version B fvz: M8-M20

Wedge Anchor B /	B fvz / B sh	/ B A2 / B	A4 / B HCR
------------------	--------------	------------	------------

Performance Displacements Annex C4