

LEISTUNGSERKLÄRUNG

DoP Nr.: MKT-1.1-300_de

♦ Eindeutiger Kenncode des Produkttyps:

MKT Einschlaganker E/ES

♦ Verwendungszweck(e):

Wegkontrolliert spreizender Dübel zur Verankerung im

ungerissenen Beton, siehe Anhang B

♦ Hersteller:

MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

♦ System(e) zur Bewertung und

Überprüfung der Leistungsbeständigkeit:

1

♦ Europäisches Bewertungsdokument:

ETAG 001-4

Europäische Technische Bewertung:

ETA-02/0020, 01.03.2016

Technische Bewertungsstelle:

DIBt, Berlin

Notifizierte Stelle(n):

NB 2873 – Technische Universität Darmstadt

Wesentliche Merkmale	Leistung
Mechanische Festigkeit und Standsicherheit (BWR 1)	
Charakteristische Widerstände unter Zug- und Querbeanspruchung	Anhang C1 – C4
Rand- und Achsabstände	Anhang C1 – C2
Verschiebungen (Zug- und Querbeanspruchung)	Anhang C5
Brandschutz (BWR 2)	,
Brandverhalten	Klasse A1
Feuerwiderstand	Keine Leistung bewertet

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung / den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Stefan Weustenhagen

(Geschäftsführer)

Weilerbach, 01.01.2021

Dipl.-Ing. Detlef Bigalke
(Leiter der Produktentwicklung)

i.V. Ligaller

Spezifizierung des Verwendungszwecks

Verankerungen unter:

Statische oder quasi-statische Einwirkung

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206-1:2000
- Ungerissener Beton
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206-1:2000

Anwendungsbedingungen:

- Bauteile unter Bedingungen trockener Innenräume (galvanisch verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen. (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Festigkeitsklasse und die Länge der Befestigungsschraube oder der Gewindestange müssen vom Planer festaeleat werden.
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung nach:
 - ETAG 001, Anhang C. Bemessungsmethode A. Ausgabe August 2010 oder
 - CEN/TS 1992-4:2009, Bemessungsmethode A

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation angegebenen Spreizwerkzeugen.
- Bohrlocherstellung nur durch Hammerbohren.
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.

Einschlaganker E / E	:5
----------------------	----

Tabelle B1: Montage- und Dübelkennwerte

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x80	M16x65	M16x80	M20x80
Bohrlochtiefe	h ₀ =	[mm]	30	30	40	30	40	50	80	65	80	80
Bohrernenndurchmesser	d ₀ =	[mm]	8	10	10	12	12	15	15	20	20	25
Bohrerschneiden- durchmesser	$d_{cut} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	15,5	20,55	20,55	25,55
max. Drehmoment beim Verankern ¹⁾	T _{inst} ≤	[Nm]	4	8	8	15	15	35	35	60	60	120
Durchgangsloch im anzuschließenden Bauteil	$d_f \! \leq \!$	[mm]	7	9	9	12	12	14	14	18	18	22
Gewindelänge	L_th	[mm]	13	13	20	12	15	18	45	23	38	34
Mindesteinschraubtiefe	L_{sdmin}	[mm]	7	9	9	10	11	13	13	18	18	22
Stahl, galvanisch verzink	t											
Mindestbauteildicke	h _{min}	[mm]	100	100	100	120	120	130	130	160	160	200
Minimaler Achsabstand	S _{min}	[mm]	55	60	80	100	100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	95	95	95	115	135	165	165	200	200	260
Nichtrostender Stahl A4,	HCR											
Mindestbauteildicke	h _{min}	[mm]	100	100	100	-	130	140	140	160	160	250
Minimaler Achsabstand	S _{min}	[mm]	50	60	80		100	120	120	150	150	160
Minimaler Randabstand	C _{min}	[mm]	80	95	95		135	165	165	200	200	260

Wenn die Schraube oder Gewindestange anderweitig gegen Herausdrehen gesichert ist, kann auf das Drehmoment verzichtet werden.

Schraube (Gewindestange)

$\frac{L_{Sd}}{hef = h_0}$

Anforderungen an die Schraube bzw. an die Gewindestange und Mutter entsprechend Planungsunterlagen:

- Minimale Einschraubtiefe L_{sdmin} siehe Tabelle B1
- Die Länge der Schraube bzw. der Gewindestange muss in Abhängigkeit von der Anbauteildicke t_{fix}, der vorhandenen Gewindelänge L_{th} (= maximale Einschraubtiefe) und der minimalen Einschraubtiefe L_{sdmin} festgelegt werden.
- A₅ > 8 % Duktilität

Stahl, galvanisch verzinkt

Festigkeitsklasse 4.6 / 5.6 / 5.8 oder 8.8 nach EN ISO 898-1:2013 bzw. EN ISO 898-2:2012

Nichtrostender Stahl A4

- Werkstoff 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

Hochkorrosionsbeständiger Stahl (HCR)

- Werkstoff 1.4529; 1.4565, nach EN 10088:2005
- Festigkeitsklasse 70 oder 80 nach EN ISO 3506:2010

Einschlaganker E / ES	
Verwendungszweck Montage- und Dübelkennwerte	Anhang B2

Montageanweisung

1	907	Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen.
2		Bohrloch vom Grund her ausblasen.
3		Anker einschlagen.
4	———	Konus mit Spreizwerkzeug eintreiben.
5		Der Anschlag des Spreizwerkzeugs muss auf dem Ankerrand aufsetzen.
6	Tinst	Montagedrehmoment T _{inst} mit kalibriertem Drehmomentschlüssel aufbringen.

Einschlaganker E / ES	
Verwendungszweck Montageanweisung	Anhang B3

Tabelle C1: Charakteristische Werte bei Zugbeanspruchung, verzinkt

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80
Montagesicherheitsbeiwert $\gamma_2 =$	[-]	1,2									
Stahlversagen											
Charakteristische Zugtragfähigkeit Stahl 4.6	I _{Rk,s}	[kN]	8,0	14,	6	23,	2	33	3,7	62,8	98,0
Teilsicherheitsbeiwert	γMs	[-]					2,0				
Charakteristische Zugtragfähigkeit N Stahl 5.6	Rk,s	[kN]	10,0 18,3			18,0	20,2	42	2,1	78,3	122,4
Teilsicherheitsbeiwert	γMs	[-]	2,0			1,	5		2,	0	
Charakteristische Zugtragfähigkeit N Stahl 5.8	I _{Rk,s}	[kN]	10,0	17,6	18,3	18,0	20,2	40,2	42,1	67,1	106,4
Teilsicherheitsbeiwert	γMs	[-]			1,	5				1,6	
Charakteristische Zugtragfähigkeit N Stahl 8.8	I _{Rk,s}	[kN]	15,0	17,6	19,9	18,0	20,2	40,2	43,0	67,1	106,4
Teilsicherheitsbeiwert	γMs	[-]			1,	5				1,6	
Herausziehen											
Charakteristische Tragfähigkeit Nim Beton C20/25	I _{Rk,p}	[kN]	2)	2)	9	2)	2)	2	2)	2)	2)
Erhöhungsfaktor für N _{Rk,p}	Ψс	[-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0,3}$						
Betonausbruch und Spalten											
Verankerungstiefe	h _{ef}	[mm]	30	30	40	30	40	5	0	65	80
Achsabstand s _{cr,N} (= 2 c	cr,N)	[mm]					3 h _{ef}				
(Randabstand) $s_{cr,sp}$ (= 2 c_c	cr,sp)	[mm]	190	190	190	230	270	33	30	400	520
Faktor gemäß CEN/TS 1992-4	k _{ucr}	[-]					10,1				

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen ²⁾ Herausziehen ist nicht maßgebend

Einschlaganker E / ES

LeistungCharakteristische Werte bei **Zugbeanspruchung, verzinkt**

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl A4, HCR

Dübelgröße			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Stahlversagen									
Charakteristische Zugtragfähig (Festigkeitsklasse 70)	keit N _{Rk,s}	[kN]	14,1	23,	3	29,4	50,2	83,8	133,0
Charakteristische Zugtragfähig (Festigkeitsklasse 80)	keit N _{Rk,s}	[kN]	17,5	23,	3	29,4	50,2	83,8	133,0
Teilsicherheitsbeiwert	γ _{Ms} ³⁾	[-]				1,87			
Herausziehen									
Charakteristische Tragfähigkeit Beton C20/25	im N _{Rk,p}	[kN]	2)	2)	9	2)	2)	2)	2)
Erhöhungsfaktor für N _{Rk,p}	Ψс	[-]			$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$				
Betonausbruch und Spalten									
Verankerungstiefe	h _{ef}	[mm]	30 ³⁾	30	40	40	50	65	80
Achsabstand (Randabstand)	s _{cr,N} (= 2 c _{cr,N})	[mm]				3 h _{ef}			
	s _{cr,sp} (= 2 c _{cr,sp})	[mm]	160	190	190	270	330	400	520
Faktor gemäß CEN/TS 1992-4	k _{ucr}	[-]				10,1			

Einschlaganker E / ES

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen
2) Herausziehen ist nicht maßgebend.
3) Beim Nachweis gegen Betonversagen nach ETAG 001, Anhang C oder CEN/TS 1992-4-4 ist N⁰_{Rk,c} mit dem Faktor (25/f_{ck,cube})^{0,2} zu multiplizieren.

Tabelle C3: Charakteristische Werte bei Querbeanspruchung, verzinkt

Dübelgröße		M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x80	M16x65 M16x80	M20x80	
Stahlversagen ohne Heb	elarm										
Charakteristische Tragfähigkeit Stahl 4.6	[kN]	4,0	7,3		11,6	9,6	16,8		31,3	49,0	
Teilsicherheitsbeiwert	γMs	[-]					1,67				
Charakteristische Tragfähigkeit Stahl 5.6	$V_{Rk,s}$	[kN]	5,0	0 9,1		10,1	9,6	2	1,1	39,2	61,2
Teilsicherheitsbeiwert	γ_{Ms}	[-]		1,67		1,25			1,67		
Charakteristische Tragfähigkeit Stahl 5.8	$V_{Rk,s}$	[kN]	5,0	6,	9	10,1	7,2	19,4	21,1	33,5	53,2
Teilsicherheitsbeiwert	γMs	[-]				1,25				1,	33
Charakteristische Tragfähigkeit Stahl 8.8	$V_{Rk,s}$	[kN]	5,0	5,0 6,9		10,1	7,2	19,4	21,5	33,5	53,2
Teilsicherheitsbeiwert	γMs	[-]				1,25				1,	33
Duktilitätsfaktor	k ₂	[-]		1,0							
Stahlversagen mit Hebel	arm										
Charakteristisches Biegemoment Stahl 4.6	M ⁰ Rk,s	[Nm]	6,1	,1 15		30	30	52		133	259
Teilsicherheitsbeiwert	γMs	[-]		1,67							
Charakteristisches Biegemoment Stahl 5.6	M ⁰ _{Rk,s}	[Nm]	7,6	1	9	37	37	65		166	324
Teilsicherheitsbeiwert	γMs	[-]					1,67				
Charakteristisches Biegemoment Stahl 5.8	M ⁰ _{Rk,s}	[Nm]	7,6	1	9	37	37	65		166	324
Teilsicherheitsbeiwert	γMs	[-]					1,25				
Charakteristisches Biegemoment Stahl 8.8	M ⁰ _{Rk,s}	[Nm]	12	3	0	59	60	1	105	266	519
Teilsicherheitsbeiwert	γMs	[-]					1,25				
Duktilitätsfaktor	k ₂	[-]					1,0				
Betonausbruch auf der I	astabgev	wandte	n Seite								
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS	k ₍₃₎	[-]	1,0					1	1,5		0
Betonkantenbruch											
Wirksame Dübellänge bei Querlast	l _f	[mm]	30	30	40	30	40	ŧ	50	65	80
Wirksamer Außendurchmesser	d_{nom}	[mm]	8	10	10	12	12	·	15	20	25

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen

Einschlaganker E / ES	j
-----------------------	---

Leistung

Charakteristische Werte bei Querbeanspruchung, verzinkt

Anhang C3

Tabelle C4: Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4, HCR

Dübelgröße	Dübelgröße					M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Stahlversagen ohne Hebelarm									
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 70)	$V_{Rk,s}$	[kN]	7,0	10,	6	13,4	25,1	41,9	66,5
Charakteristisches Quertragfähigkeit (Festigkeitsklasse 80)	$V_{Rk,s}$	[kN]	8,7	10,	6	13,4	25,1	41,9	66,5
Teilsicherheitsbeiwert	γMs	[-]				1,56			
Duktilitätsfaktor	k_2	[-]				1,0			
Stahlversagen mit Hebelarm									
Charakteristisches Biegemoment (Festigkeitsklasse 70)	$M^0_{Rk,s}$	[Nm]	11	2	6	52	92	233	454
Teilsicherheitsbeiwert	γ_{Ms}	[-]	1,56						
Charakteristisches Biegemoment (Festigkeitsklasse 80)	$M^0_{Rk,s}$	[Nm]	12	3	0	60	105	266	519
Teilsicherheitsbeiwert	γMs	[-]				1,33			
Duktilitätsfaktor	k_2	[-]	1,0						
Betonausbruch auf der lastabgewandten	Seite								
Faktor k gemäß ETAG 001, Anhang C bzw. k₃ gemäß CEN/TS	k ₍₃₎	[-]	1,0	1,	7	1,	7	2,	0
Betonkantenbruch									
Wirksame Dübellänge bei Querlast	l _f	[mm]	30	30	40	40	50	65	80
Wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	10	12	15	20	25

¹⁾ Nur zur Verwendung in statisch unbestimmten Systemen

Einschlaganker E / ES

Leistung

Charakteristische Werte bei Querbeanspruchung, nichtrostender Stahl A4, HCR

Anhang C4

Tabelle C5: Verschiebungen unter Zuglast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50 M12x80	M16x65 M16x80	M20x80
Stahl galvanisch verzinkt										
Zuglast im ungerissenen Beton	N	[kN]	3	3	3,6	3,3	4,8	6,4	10	14,8
Verschiebung	δ_{N0}	[mm]	0,24							
	$\delta_{N\infty}$	[mm]				0,	36			
Nichtrostender Stahl A4 / HCR										
Zuglast im ungerissenen Beton	N	[kN]	4	4	4,3	-	6,1	8,5	12,6	17,2
Verschiebung	δ_{N0}	[mm]	0,12							
	δ_{N_∞}	[mm]	·	·	·	0,	24	·	·	·

Tabelle C6: Verschiebungen unter Querlast

Dübelgröße			M6x30	M8x30	M8x40	M10x30	M10x40		M16x65 M16x80	M20x80
Stahl galvanisch verzinkt										
Querlast im ungerissenen Beton	V	[kN]	2	4	4	5,7	4,0	11,3	18,8	32,2
Verschiebung	δ_{V0}	[mm]	0,9	0,9	1,0	1,5	0,6	1,2	1,2	1,6
	$\delta_{V_{\infty}}$	[mm]	1,3	1,3	1,5	2,3	0,9	1,9	1,9	2,4
Nichtrostender Stahl A4 / HCR										
Querlast im ungerissenen Beton	V	[kN]	3,5	5,2	5,2	-	6,5	11,5	19,2	30,4
Verschiebung	δ_{V0}	[mm]	1,9	1,1	0,7	-	1,0	1,7	2,4	2,6
	$\delta_{V_{\infty}}$	[mm]	2,8	1,6	1,0	-	1,5	2,6	3,6	3,8

Einsch	lagan	ker E	/ ES
--------	-------	-------	------