

PRESTANDADEKLARATION **DoP Nr. MKT-161** - sv

- 1. Produkttypens unika identifikationskod: MKT Schwerlastanker SLZ
- 2. Typ-, parti- eller serienummer eller någon annan beteckning som möjliggör identifiering av byggprodukter i enlighet med artikel 11.4

ETA-09/0342, Appendix A2 Partinummer: se förpackning

3. Byggproduktens avsedda användning eller användningar i enlighet med den tillämpliga, harmoniserade tekniska specifikationen, såsom förutsett av tillverkaren:

Typ av produkt	Vridmoment expander (Sleeve typ)		
För användning i	sprucken och osprucken betong C20/25 - C50/60 (EN 206)		
Option	1		
Belastning	Statisk, kvasistatiska		
Material	Galvaniserat stål: endast i torra utrymmen storlekar: SLZ-S (14 M10) SLZ-B (14 M10)		
Temperaturområde (möjligen)			

4. Tillverkarens namn, registrerade företagsnamn eller registrerade varumärke samt kontaktadress enligt vad som krävs i artikel 11.5:

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 D - 67685 Weilerbach

- 5. I tillämpliga fall namn och kontaktadress för tillverkarens representant vars mandat omfattar de uppgifter som anges i artikel 12.2: --
- 6. I tillämpliga fall namn och kontaktadress för tillverkarens representant vars mandat omfattar de uppgifter som anges i artikel 12.2: **System 1**

-1-

7. För det fall att prestandadeklarationen avser en byggprodukt som omfattas av en harmoniserad standard:

01.03.2018

8. För det fall att prestandadeklarationen avser en byggprodukt för vilken en europeisk teknisk bedömning har utfärdats:

Deutsches Institut für Bautechnik, Berlin

har utfärdat

ETA-09/0342

på grundval av

EAD 330232-00-0601

Det anmälda produktcertifieringsorganet 1343-CPR har utförts enligt System 1:

- i) bestämning av produkttypen på grundval av typprovning (inkl. stickprov), typberäkning, tabellerade värden eller beskrivande dokumentation av produkten;
- ii) inledande inspektion av tillverkningsanläggningen och tillverkningskontrollen i fabrik;
- iii) fortlöpande övervakning, bedömning och utvärdering av tillverkningskontrollen i fabrik.

och följande visas: Intyg om kontinuitet för produktens prestanda 1343-CPR-M550-23/08.14

9. Angiven prestanda:

Väsentliga egenskaper	Design metod	Prestanda	Harmoniserad teknisk specifikation	
Karakteristisk motstånd mot dragbelastningar	FprEN 1992-4 & TR 055	Appendix C1		
Karakteristisk resistens mot skjuvlaster	FprEN 1992-4 & TR 055	Appendix C2	EAD 330232-00-0601	
Skift i bruk	FprEN 1992-4 & TR 055	Appendix C1 & C2		
Karakteristiskt motstånd under brandexponering	FprEN 1992-4 & TR 055	Appendix C3		

När den specifika tekniska dokumentationen har använts enligt artikel 37 eller 38, de krav med vilka produkten överensstämmer:

10. Prestandan för den produkt som anges i punkterna 1 och 2 överensstämmer med den prestanda som anges i punkt 9.

Denna prestandadeklaration utfärdas på eget ansvar av den tillverkare som anges under punkt 4.

Undertecknat för tillverkaren av:

Stefan Weustenhagen (Verkställande direktör)

Weilerbach, 01.03.2018

Dipl.-Ing Detlef Bigalke (Produktutveckling direktör)

Table C1: Characteristic values for tension loads

Anchor size			14/M10
Installation safety factor	γinst	[-]	1,0
Steel failure	-		
Characteristic resistance	$N_{Rk,s}$	[kN]	46
Partial safety factor	γ̃Ms	[-]	1,5
Pull-out failure			
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	12
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	20
Increasing factors for N _{RK,p}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$
Concrete cone failure			
Effective Anchorage depth	h _{ef}	[mm]	65
Spacing	$S_{cr,N}$	[mm]	3 h _{ef}
Edge distance	$C_{cr,N}$	[mm]	1,5 h _{ef}
Factor k₁ for cracked concrete	$k_{cr,N}$	[-]	7,7
Factor k₁ for uncracked concrete	$k_{ucr,N}$	[-]	11,0
Splitting failure			
Characteristic resistance in uncracked concrete	$N^0_{\ Rk,sp}$	[kN]	min [N _{Rk,p} ;N ⁰ _{Rk,c}]
Spacing	S _{cr,sp}	[mm]	390
Edge distance	C _{cr,sp}	[mm]	195

Table C2: Displacements under tension loads

Anchor size			14/M10
Tension load in cracked concrete	N	[kN]	5,7
Displacement	δ_{N0}	[mm]	0,8
Displacement	$\delta_{N\infty}$	[mm]	1,5
Tension load in uncracked concrete	N	[kN]	9,5
Displacement	δ_{N0}	[mm]	0,3
Displacement	$\delta_{N\infty}$	[mm]	1,2

Performance

Characteristic values and displacements under tension load

Annex C1

Table C3: Characteristic values for shear loads

Anchor size			
Steel failure without lever arm			
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} ≤ 75 mm	$V^0_{Rk,s}$	[kN]	32,8
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} > 75 mm	$V^0_{Rk,s}$	[kN]	23,2
Factor	k_7	[-]	1,0
Partial safety factor γ _{Ms} [-]		[-]	1,25
Steel failure with lever arm			
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	60
Partial safety factor	γMs	[-]	1,25
Concrete pry-out failure			
Factor	k ₈	[-]	2,0
Concrete edge failure			
Effective length of anchor in shear loading I _f [mm]		[mm]	65
Outside diameter of anchor	d_{nom}	[mm]	14

Table C4: Displacements under shear loads

Anchor size			14/M10
Shear load in non-cracked concrete	V	[kN]	13,2
Dianlesement	δ_{V0}	[mm]	2,2
Displacement	δ_{V^∞}	[mm]	3,3

Highload Anchor SLZ	
---------------------	--

Table C5: Characteristic values under fire exposure in concrete C20/25 to C50/60

Anchor size				14/M10
Tension load				
Steel failure				
	R30	_		0,9
Characteristic resistance	R60	N	[kN]	0,8
Characteristic resistance	R90	$N_{Rk,s,fi}$		0,6
	R120			0,5
Shear load				
Steel failure without lever arm				
	R30	V _{Rk,s,fi}	[kN]	0,9
Characteristic resistance	R60			0,8
Characteristic resistance	R90		[KIN]	0,6
	R120			0,5
Steel failure with lever arm				
	R30			1,1
Characteristic resistance	R60	$M^0_{Rk,s,fi}$	[Mm]	1,0
Onal acteristic resistance	R90	IVI Rk,s,fi	[Nm]	0,7
	R120	_		0,6

High	load	Ancho	r SLZ