

... eine starke Verbindung

DÉCLARATION DES PERFORMANCES

Numéro de DoP : MKT-125 - fr

∻	Code d'identification unique du produit type:	Cheville d'ancrage fixation lourde SZ
¢	Usage(s) prévu(s):	Cheville mécanique dans le béton, voir l'annexe/Annex B
¢	Fabricant:	MKT Metall-Kunststoff-Technik GmbH & Co.KG Auf dem Immel 2 67685 Weilerbach
¢	Le ou les systèmes d'évaluation et de vérification de la constance des performances du produit de construction:	1
¢	Document d'évaluation européen: Évaluation technique européenne: Organisme d'évaluation technique: Organisme(s) notifié(s):	EAD 330232-00-0601 ETA-02/0030, 13.09.2019 DIBt, Berlin NB 1343 – MPA, Darmstadt

Performance(s) déclarée(s):

Caractéristiques essentielles	Performances
Résistance mécanique et stabilité (BWR 1)	•••••••••••••••••••••••••••••••••••••••
Résistances caractéristiques sous traction (effets statiques et quasi statiques)	Annexe / Annex C1 – C4
Résistance caractéristique sous contrainte transversale (effets statiques et quasi statiques)	Annexe / Annex C5 – C6
Résistances caractéristiques pour les catégories de performance sismique C1 + C2	Annexe / Annex C7 – C8
Décalage	Annexe / Annex C10 – C11
Durabilité	Annexe / Annex B1
Sécurité en cas d'incendie (BWR 2)	
Le comportement du feu	Classe A1
Résistance au feu	Annexe / Annex C9

Les performances du produit identifié ci-dessus sont conformes aux performances déclarées. Conformément au règlement (EU) no 305/2011, la présente déclaration des performances est établie sous la seule responsabilité du fabricant mentionné ci-dessus.

Signé pour le fabricant et en son nom par:

Stefan Weustenhagen (Directeur général) Weilerbach, 13.09.2019

p.p. Rigelke

Dipl.-Ing. Detlef Bigalke (Directeur du développement de produits)

L'original de cette déclaration des performances a été rédigé en allemand. En cas de divergences dans la traduction, la version allemande fait foi.

Specification of intended use									
Highload Anchor SZ, steel zinc plated	10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24	
Static or quasi-static action				•	1				
Seismic action (SZ-B and SZ-S)	-				C1 + C2				
Seismic action (SZ-SK)	-		C1 + C2				-		
Fire exposure		R 30 R 120							
Highload Anchor SZ, stainless steel A4		12/M8	15/M10	18/M12	24/M16				
Static or quasi-static action			```	/					
Seismic action (SZ-B and SZ-S)			C1 -	+ C2					
Seismic action (SZ-SK)			C1 + C2		-				
Fire exposure			R30	. R120					

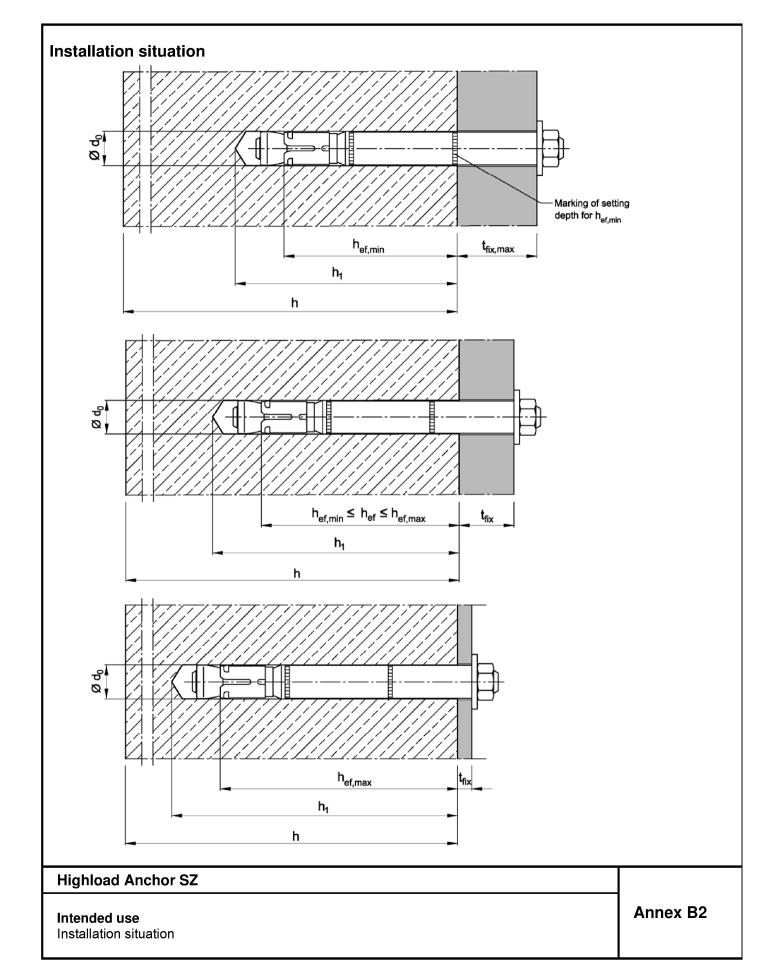
Base materials:

- Cracked and uncracked concrete
- Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel). Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used.)

Design:


- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design according to EN 1992-4:2018 and Technical Report TR055

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the obligation of the person responsible for technical matters on site.
- Compliance with the effective anchorage depth. For fastenings with anchorage depths $h_{ef} > h_{ef,min}$ the usable thickness of fixture is reduced by $h_{ef} h_{ef,min}$.
- Use as supplied by the manufacturer without replacing individual parts.
- Drilling of hole only by hammer drilling (use of vacuum drill bits is admissible)

Highload Anchor SZ

Intended use Specification of intended use Annex B1

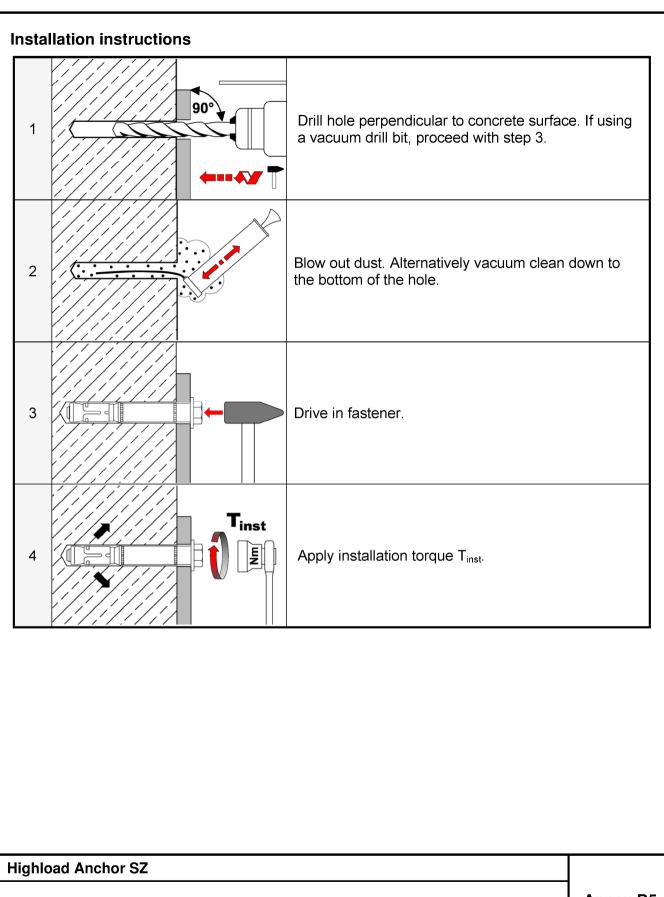
Table B1: Install	ation paran	neters	s, steel	zinc pl	ated					
Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Size of thread		[-]	M6	M8	M10	M12	M16	M16	M20	M24
Minimum effective anchorage depth	$\mathbf{h}_{\mathrm{ef,min}}$	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Nominal diameter of dr bit	a ₀ =	[mm]	10	12	15	18	24	24	28	32
Cutting diameter of dril bit	l d _{cut} ≤	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55	32,7
Depth of drill hole	$h_1 \ge$	[mm]	h _{ef} + 15	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30	h _{ef} + 30	h _{ef} + 35	h _{ef} + 30
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	12	14	17	20	26	26	31	35
Thickness of countersu washer SZ-SK	ınk t _{sk}	[mm]	4	5	6	7	-	-	-	-
Minimum thickness of fixture SZ-SK	$t_{\rm fix\ min}^{2)}$	[mm]	8	10	14	18	-	-	-	-
Installation T _{inst}	(SZ-B, SZ-S)	[Nm]	15	30	50	80	160	160	280	280
torque T _{inst}	(SZ-SK)	[Nm]	10	25	55	70	-	-	-	-
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 50	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100	h _{ef} + 115	h _{ef} + 125	h _{ef} + 150
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	50	60	70	100	100	125	150
cracked concrete	for c ≥	[mm]	50	80	120	140	180	180	300	300
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	55	60	70	100	100	200	150
cracked concrete	for s ≥	[mm]	50	100	120	160	220	220	350	300
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	60	70	100	100	125	150
uncracked concrete	for c ≥	[mm]	80	100	120	140	180	180	300	300
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	60	60	70	100	100	200	150
uncracked concrete	for s ≥	[mm]	100	120	120	160	220	220	350	300

...

¹⁾ Intermediate values by linear interpolation ²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). ³⁾ For fire exposure from more than one side c ≥ 300 mm or $c_{min} \ge 300$ mm applies.

Highload Anchor SZ

Intended use Installation parameters, steel zinc plated


Fastener size			12/M8	15/M10	18/M12	24/M16
Size of thread		[-]	M8	M10	M12	M16
Minimum effective anchorage depth	$\mathbf{h}_{\mathrm{ef,min}}$	[mm]	60	71	80	100
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150
Nominal diameter of drill bit	d ₀ =	[mm]	12	15	18	24
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	12,5	15,5	18,5	24,55
Depth of drill hole	$h_1 \ge$	[mm]	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30
Diameter of clearance hole in the fixtu	re d _f ≤	[mm]	14	17	20	26
Thickness of countersunk washer SZ-	SK t _{sk}	[mm]	5	6	7	-
Minimum thickness of fixture SZ-SK	$t_{fix min}^{2)}$	[mm]	10	14	18	-
	T _{inst} (SZ-B)	[Nm]	35	55	90	170
Installation torque	T _{inst} (SZ-S)	[Nm]	30	50	80	170
	T _{inst} (SZ-SK)	[Nm]	17,5	42,5	50	-
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	70	80
cracked concrete	for c ≥	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	60	70	80
cracked concrete	for s ≥	[mm]	80	120	160	200
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	70	80
uncracked concrete	for c ≥	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	85	70	180
uncracked concrete	for s ≥	[mm]	80	185	160	80

. .

¹⁾ Intermediate values by linear interpolation ²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). ³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

Highload Anchor SZ

Intended use Installation parameters, stainless steel A4

Intended use Installation instructions Annex B5

Table C1:Characteristic values for tension load, cracked concrete,
static or quasi-static action, steel zinc plated

					-					
Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Installation factor	γ_{inst}	[-]				1	,0			
Steel failure									_	
Characteristic resistance	e N _{Rk,s}	[kN]	16	29	46	67	126	126	196	282
Partial factor	γ_{Ms}	[-]				1	,5			
Pull-out failure										
Characteristic resistance cracked concrete C20/2	No	[kN]	5	12	16	25	36	44	50	65
Increasing factor for N_{Rk}	р Фс	[-]				$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{10}\right)^{0.5}$			
Concrete cone failure										
Minimum effective anchorage depth	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]				7	,7			

Highload Anchor SZ

Performance Characteristic values for tension load, cracked concrete, static or quasi-static action, steel zinc plated

Table C2:Characteristic values for tension load, cracked concrete,
static or quasi-static action, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16
Installation factor	γinst	[-]		1	,0	
Steel failure						
SZ-B						
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110
Partial factor	γMs	[-]		1	,5	•
SZ-S and SZ-SK						
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial factor	γMs	[-]		1,	87	
Pull-out failure						
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	25	36
Increasing factor for $N_{Rk,p}$	Ψc	[-]		$\left(\frac{f_{ck}}{20}\right)$	-) ^{0,5}	
Concrete cone failure						
Minimum effective anchorage depth	h _{ef,min}	[mm]	60	71	80	100
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]		7	,7	

Highload Anchor SZ

Table C3: Characteristic values for tension load, uncracked concrete, static or quasi-static action, steel zinc plated

Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24	
Installation factor	γinst	[-]				1	,0				
Steel failure					1	1					
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282	
Partial factor	γ_{Ms}	[-]				1	,5		•		
Pull-out failure											
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	17	20	30	36	50	1)	70	1)	
Increasing factor for $N_{Rk,p}$	Ψc	[-]			$\left(\frac{f_{ck}}{20}\right)^{0,5}$			-	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	-	
Splitting failure (The higher	resistance	of case	1 and ca	se 2 may	be applied	I)					
Case 1									_		
Characteristic resistance in uncracked concrete C20/25	${\sf N}^0{}_{\sf Rk,sp}$	[kN]	12	16	25	30	40	70	50	70	
Edge distance	C _{cr,sp}	[mm]				1,5	h _{ef}				
Increasing factor for $N^0_{Rk,sp}$	Ψc	[-]				$\left(\frac{f_{ck}}{20}\right)$	$(\frac{1}{5})^{0,5}$				
Case 2											
Characteristic resistance in uncracked concrete	$N^0_{Rk,sp}$	[kN]				min (N _{Rk}	_{,p} ; N ⁰ _{Rk,c})				
Edge distance	C _{cr,sp}	[mm]			2,5 h _{ef}			1,5 h _{ef}	2,5 h _{ef}	2 h _{ef}	
Concrete cone failure									•		
Minimum effective anchorage depth	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150	
Maximum effective anchorage depth	$\mathbf{h}_{\text{ef},\text{max}}$	[mm]	76	100	110	130	114	150	185	210	
Edge distance	$C_{cr,N}$	[mm]				1,5	h _{ef}				
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]				1′	١,0				
¹⁾ N ₂ = N ⁰ ₂ , calculated wit	th h										

¹⁾ $N_{Rk,p} = N_{Rk,c}^{0}$ calculated with $h_{ef,min}$

Highload Anchor SZ

Performance Characteristic values for tension load, uncracked concrete, static or quasi-static action, steel zinc plated

Table C4: Characteristic values for tension load, uncracked concrete, static or quasi-static action, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16
Installation factor	γinst	[-]		1	,0	
Steel failure						
SZ-B				•		
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial factor	γ́Ms	[-]		1	,5	
SZ-S and SZ-SK		1 1				
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial factor	γ̃Ms	[-]		1,	87	
Pull-out failure						
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	16	25	35	50
Increasing factor for N _{Rk,p}	Ψc	[-]		$\left(\frac{f_{ck}}{20}\right)$	-)0,5	1
Splitting failure		· ·				
Edge distance	C _{cr,sp}	[mm]	180	235	265	300
Concrete cone failure						
Minimum effective anchorage depth	$\mathbf{h}_{\mathrm{ef},\mathrm{min}}$	[mm]	60	71	80	100
Maximum effective anchorage depth	$h_{ef,max}$	[mm]	100	110	130	150
Edge distance	C _{cr,N}	[mm]		1,5	h _{ef}	
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]		11	,0	

Highload Anchor SZ

Table C5:Characteristic values of shear load, static or quasi-static action,
steel zinc plated

Steel failure without le SZ-B Characteristic resistance Ductility factor Partial factor SZ-S and SZ-SK	ever arm V ^o _{Rk,s} k ₇	1 [kN]									
Characteristic resistance Ductility factor Partial factor		[kN]									
resistance Ductility factor Partial factor		[kN]									
Partial factor	ا بر		16	25	36	63	91	91	122	200	
	N 7	[-]				1,	0				
SZ-S and SZ-SK	γ _{Ms}	[-]				1,2	25				
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	18	30	48	73	126	126	150	200	
Ductility factor	k 7	[-]				1,	0				
Partial factor	γ_{Ms}	[-]				1,2	25				
Steel failure with leve	r arm										
SZ-B, SZ-S und SZ-SK											
Anchorage depth	h _{ef,min} ≥	[mm]	50	60	71	80	100	115	125	150	
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	266	266	519	898	
Partial factor	γ _{Ms}	[-]				1,2	25				
Anchorage depth	h _{ef} ≥	[mm]	64	73	90	106	138	138	158	188	
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	40	58	119	234	529	529	847	1343	
Partial factor	γ _{Ms}	[-]				1,2	25				
Concrete pry-out failu	ire										
Pry-out factor	k ₈	[-]	1,8 ¹⁾				2,0				
Concrete edge failure											
Effective length of fastener in shear loading	۱ _f	[mm]		h _{ef}							
Outside diameter of fastener	d _{nom}	[mm]	10	12	15	18	24	24	28	32	

Highload Anchor SZ

Table C6:Characteristic values for shear load, static or quasi-static action,
stainless steel A4

Stainless Steel A4						
Fastener size			12/M8	15/M10	18/M12	24/M16
Steel failure without lever arm		-		Γ	Γ	Γ
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	24	37	62	92
SZ-B						
Ductility factor	k ₇	[-]		1	,0	
Partial factor	γ_{Ms}	[-]		1,	25	
SZ-S						
Ductility factor	k ₇	[-]		1,	0	
Partial factor	γ_{Ms}	[-]		1,	36	
SZ-SK				-		-
Ductility factor	k ₇	[-]		0,8		-
Partial factor	γ_{Ms}	[-]		1,36		-
Steel failure with lever arm					-	
Anchorage depth	h _{ef,min} ≥	[mm]	60	71	80	100
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	232
SZ-B						
Partial factor	γ_{Ms}	[-]		1,	25	
SZ-S and SZ-SK	-			-	-	-
Partial factor	γ_{Ms}	[-]		1,	56	
SZ-B, SZ-S and SZ-SK						
Anchorage depth	h _{ef} ≥	[mm]	73	90	106	138
Characteristic bending resistance	M ⁰ _{Rk.s}	[Nm]	103	211	374	847
Partial factor	γ _{Ms}	[-]		1,	25	I
Concrete pry-out failure						
Pry-out factor	k ₈	[-]		2	,0	
Concrete edge failure						
Effective length of fastener in shear loading	ا _f	[mm]		h	ef	
Outside diameter of fastener	d _{nom}	[mm]	12	15	18	24

Highload Anchor SZ

Performance Characteristic values for shear load, static or quasi-static action, stainless steel A4

Table C7: Characteristic values for seismic action, Category C1 and C2, steel zinc plated

Fastener size			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24
Tension load							•		
Installation factor	γinst	[-]				1,0			
Steel failure									
Characteristic resistance category C1	$N_{Rk,s,eq,C1}$	[kN]	29	46	67	126	126	196	282
Characteristic resistance category C2	$N_{Rk,s,eq,C2}$	[kN]	29	46	67	126	126	196	282
Partial factor	γ _{Ms}	[-]				1,5			
Pull-out failure									
Characteristic resistance category C1	$N_{Rk,p,eq,C1}$	[kN]	12	16	25	36	44,4	50,3	63,3
Characteristic resistance category C2	$N_{Rk,p,eq,C2}$	[kN]	5,4	16,4	22,6	29,0	41,2	43,6	63,3
Shear load									
Steel failure without lever	^r arm								
SZ-B									
Characteristic resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic resistance category C2	V _{Rk,s,eq,C2}	[kN]	12,7	20,5	31,5	50,1	50,1	67,1	108,1
SZ-S							•		
Characteristic resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	12,7	20,5	31,5	69,3	69,3	67,1	108,1
SZ-SK			•						
Characteristic resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	25,2	36,5	50,4	-	-	-	-
Characteristic resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	19,2	29,3	39,4	-	-	-	-
Factor for annular gap	$lpha_{\sf gap}$	[-]				0,5			
Partial factor	γ́мs	[-]				1,25			

Highload Anchor SZ

Performance Characteristic values for seismic action, steel zinc plated

Table C8:Characteristic values for seismic action, Category C1 and C2,
stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16	
Tension load						l	
Installation factor	γinst	[-]		1,	,0		
Steel failure							
Characteristic resistance, category C1	$N_{Rk,s,eq,C1}$	[kN]	26	41	60	110	
Characteristic resistance, category C2	$N_{Rk,s,eq,C2}$	[kN]	26	41	60	110	
Partial factor SZ-B	rtial factor SZ-B γ_{Ms} [-]						
Partial factor SZ-S and SZ-SK	[-]	1,87					
Pull-out failure							
Characteristic resistance, category C1	$N_{Rk,p,eq,C1}$	[kN]	9	16	26	36	
Characteristic resistance, category C2	$N_{Rk,p,eq,C2}$	[kN]	4,8	16,5	24,8	44,5	
Shear load							
Steel failure without lever arm							
SZ-B							
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4	
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2	
Partial factor	γ_{Ms}	[-]	1,25				
SZ-S	·		-				
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4	
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2	
Partial factor	γ_{Ms}	[-]		1,	36		
SZ-SK							
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	11,5	23,3	31,6	-	
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	10,8	17,4	15,4	-	
Partial factor	γ_{Ms}	[-]		1,36		-	
Factor for annular gap	α_{gap}	[-]		0,	,5		

Highload Anchor SZ

Performance Characteristic values for seismic action, stainless steel A4

Fastener size				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Tension load											
Steel failure											
Steel zinc plate	d										
	R30	— — N _{Rk,s,fi} —	[kN]	1,0	1,9	4,3	6,3	11	,6	18,3	26,3
Characteristic resistance	R60			0,8	1,5	3,2	4,6	8,	6	13,5	19,5
	R90			0,6	1,0	2,1	3,0	5,	0	7,7	12,6
	R120			0,4	0,8	1,5	2,0	3,	1	4,9	9,2
Stainless steel	A 4										
	R30	_	[kN]	-	6,1	10,2	15,7	29,2	-	-	-
Characteristic	R60			-	4,4	7,3	11,1	20,6	-	-	-
resistance	R90	– N _{Rk,s,fi}		-	2,6	4,3	6,4	12,0	-	-	I
	R120	_		-	1,8	2,8	4,1	7,7	-	-	-
Shear load											
Steel failure wit	hout leve	er arm									
Steel zinc plate	d										
-	R30			1,0	1,9	4,3	6,3	11,6		18,3	26,3
Characteristic	naracteristic R60	-	[kN] -	0,8	1,5	3,2	4,6	8,6		13,5	19,5
resistance	R90	- V _{Rk,s,fi}		0,6	1,0	2,1	3,0	5,0		7,7	12,6
	R120	-		0,4	0,8	1,5	2,0	3,1		4,9	9,2
Stainless steel	A4		I		1					1	
Characteristic resistance	R30	– – V _{Rk,s,fi}	[kN]	-	14,3	22,7	32,8	61,0	-	-	-
	R60			-	11,1	17,6	25,5	47,5	-	_	-
	R90			-	7,9	12,6	18,3	34,0	-	-	-
	R120		-	6,3	10,0	14,6	27,2	-	-	-	
Steel failure wit	h lever a	rm				•				l	
Steel zinc plate	d										
•	R30			0,8	2,0	5,6	9,7	24,8		42,4	83,6
Characteristic	R60	-	[Nm]	0,6	1,5	4,1	7,2	18	,3	29,8	61,9
bending resistance	R90	− M ⁰ _{Rk,s,fi}		0,4	1,0	2,7	4,7	11,9		17,1	40,1
resistance	R120	_		0,3	0,8	1,9	3,1	6,6		10,7	29,2
Stainless steel	A4				I	1				1	
	R30			-	6,2	13,2	24,4	61,8	-	-	-
Characteristic	R60	- • • •	[Nm] -	-	4,5	9,4	17,2	43,6	-	-	-
bending resistance	R90	− M ⁰ _{Rk,s,fi}		-	2,7	5,6	10,0	25,3	_	_	-
	R120	_		-	1,8	3,6	6,4	16,2	_	-	-
						•					
Highload Anc											

Characteristic values under fire exposure

Fension load			10/ M6	12/ M8	15/ M10	18/ M12	24/ M16	24 /M16L	28/ M20	32/ M24
Tension load in	Ν	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24	26,2
cracked concrete										
Displacement	δ _{N0} δ _{N∞}	[mm] [mm]	0,5 2,0	0,5 2,0	0,5 1,3	0,7 1,3	0,8 1,3	0,7 1,3	0,9 1,4	1,4 1,9
Tension load in										
uncracked concrete	N	[kN]	8,5	9,5	14,3	17,2	24	29,6	34	43
Displacement	δ _{N0}	[mm]	0,8	1,0		1,1		1,3	0,3	0,7
Jispiacement	δ _{N∞}	[mm]	3	,4		1,7		2,3	1,4	0,7
Seismic action C2										-
Displacement for DLS	$\delta_{\text{N,eq (DLS)}}$	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0	5,3
Displacement for ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	-	12,2	11,3	16,0	9,2	9,2	13,8	12,4
Shear load										
SZ-B										
Shear load in cracked		71. N 13	0.4		00.7	05.4	50.4	50.4		
and uncracked concrete	V	[kN]	9,1	14	20,7	35,1	52,1	52,1	77	86,6
	δ_{V0}	[mm]	2,5	2,1	2,7	3,0	5,1	5,1	4,3	10,5
Displacement	δ _{V∞}	[mm]	3,8	3,1	4,1	4,5	7,6	7,6	6,5	15,8
Seismic action C2	- 0		,	,	,	,	,	,	,	,
Displacement for DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6	6,1
Displacement for ULS	$\delta_{V,eq (ULS)}$	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8	9,5
SZ-S	/ IX · ·/ I			I		I				
Shear load in cracked										
and uncracked	V	[kN]	10,1	17,1	27,5	41,5	72	72	77	86,6
concrete	δ_{V0}	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3	10,5
Displacement	$\frac{\delta_{V0}}{\delta_{V\infty}}$	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5	15,8
Seismic action C2	UV∞	[]	-т,-т	0,0	0,4	0,0	10,0	10,0	0,0	10,0
Displacement for DLS	$\delta_{V,eq\ (DLS)}$	[mm]	_	2,3	3,1	3,0	3,3	3,3	1,6	6,1
Displacement for ULS	$\delta_{V,eq~(DLS)}$	[mm]	_	4,8	6,4	6,1	8,2	8,2	4,8	9,5
SZ-SK	V,eq (ULS)	[]		1,0	0,1	•, :	0,2	0,2	1,0	0,0
Shear load in cracked a	nd ٫		40.4	47.4	07.5	44.5				
uncracked concrete	V	[kN]	10,1	17,1	27,5	41,5	-	-	-	-
Displacement	δ_{V0}	[mm]	2,9	2,5	3,6	3,5	-	-	-	-
	δ_{V^∞}	[mm]	4,4	3,8	5,4	5,3	-	-	-	-
Seismic action C2										
	$\delta_{\text{V,eq (DLS)}}$	[mm]	-	3,1	3,9	3,9	-	-	-	-
Displacement for DLS Displacement for ULS		[mm]	-	10,2	11,8	13,0	-	-	-	-

Displacements under tension and shear load, steel zinc plated

Fastener size			12/M8	15/M10	18/M12	24/M16
Tension load				• •		• •
Tension load in cracked concrete	N	[kN]	4,3	7,6	12,1	17,0
Disalasanant	δ _{NO}	[mm]	0,5	0,5	1,3	0,5
Displacement	δ _{N∞}	[mm]	1,2	1,6	1,8	1,6
Tension load in uncracked concrete	N	[kN]	7,6	11,9	16,7	24,1
Displacement	δ _{NO}	[mm]	0,2	0,3	1,2	1,5
Displacement	δ_{N^∞}	[mm]	1,1	1,1	1,1	1,1
Seismic action C2						
Displacement for DLS	$\delta_{\text{N,eq (DLS)}}$	[mm]	4,7	4,5	4,3	4,9
Displacement for ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	13,3	12,7	9,7	10,1
Shear load						
Shear load in cracked concrete	V	[kN]	13,9	21,1	34,7	50,8
Displacement	δ_{V0}	[mm]	3,4	4,9	4,8	6,7
Displacement	δ_{V^∞}	[mm]	5,1	7,4	7,1	10,1
Seismic action C2						
SZ-B and SZ-S						
Displacement for DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	2,8	3,1	2,6	3,3
Displacement for ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	5,6	5,8	5,0	6,9
SZ-SK						
Displacement for DLS	$\delta_{\rm V,eq~(DLS)}$	[mm]	2,5	2,8	2,9	-
Displacement for ULS	$\delta_{V,eq~(ULS)}$	[mm]	5,8	5,9	6,9	-

Highload Anchor SZ