

... eine starke Verbindung

DECLARATION OF PERFORMANCE

DoP Nr.: MKT-2.1-400_en

✤ Unique identification code of product-type:	Injection System VME
♦ Intended use/es:	Bonded anchor for use in uncracked concrete, see Annex B
♦ Manufacturer:	MKT Metall-Kunststoff-Technik GmbH & Co.KG Auf dem Immel 2 67685 Weilerbach
♦ System/s of AVCP:	1
 European Assessment Document: European Technical Assessment: Technical Assessment Body: Notified body/ies: 	ETAG 001-5 ETA-13/0773, 01.03.2017 DIBt, Berlin NB 2873 – Technische Universität Darmstadt
♦ Declared performance/s:	
Essential characteristics	Performance
Machanical resistance and stability (PMP 4)	

Mechanical resistance and stability (BWR 1)								
Characteristic resistance for design	Annex C1 – C4							
Displacements	Annex C5 – C6							
Safety in case of fire (BWR 2)								
Reaction to fire	Class A1							
Resistance to fire	No performance assessed							

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

rhelch

Stefan Weustenhagen (General manager) Weilerbach, 01.01.2021

Γ

gulli p.p.

Dipl.-Ing. Detlef Bigalke (Head of product development)

The original of this declaration of performance was written in German. In the event of deviations in the translation, the German version shall be valid.

Specifications of intended use

Anchorages subject to:

Static and guasi static loads: M10 to M24, rebar Ø10 to Ø25

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000
- Uncracked concrete: M10 to M24, rebar Ø10 to Ø25

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently
 damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry or wet concrete: M10 to M24, Rebar Ø10 to Ø25.
- Flooded holes (not sea water): M10 to M24, Rebar Ø10 to Ø25.
- · Hole drilling by diamond drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System VME for concrete

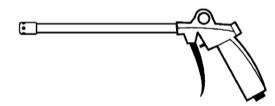
Intended use Specifications

Table B1: Installation parameters for threaded rod											
Anchor size				M12	M16	M20	M24				
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	24	28				
Embedment depth and bore hole depth	h _{ef,min} =	[mm]	60	70	80	90	96				
	h _{ef,max} =	[mm]	200	240	320	400	480				
Diameter of clearance hole in the fixture	d _f ≤	[mm]	12	14	18	22	26				
Diameter of steel brush	d _b ≥	[mm]	14	16	20	26	30				
Installation torque	T _{inst}	[Nm]	20	40	80	120	160				
Thickness of fixture	t _{fix,min} >	[mm]	0								
	t _{fix,max} <	[mm]	1500								
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h_{ef} + 2 d_0					
Minimum spacing	S _{min}	[mm]	50	60	80	100	120				
Minimum edge distance c _{min} [mm]			50	60	80	100	120				

Table B1: Installation parameters for threaded rod

Table B2: Installation parameters for rebar

Rebar size	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25				
Nominal drill hole diameter	d _o =	[mm]	14	16	18	20	24	32		
Embedment depth and	depth and h _{ef,min} = [mm]	60	70	75	80	90	100			
bore hole depth	h _{ef,max} =	[mm]	200	240	280	320	400	500		
Diameter of steel brush	d _b ≥	[mm]	16	18	20	22	26	34		
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30mm ≥ 100 mm		h _{ef} + 2d ₀					
Minimum spacing	S _{min}	[mm]	50	60	70	80	100	125		
Minimum edge distance	C _{min}	[mm]	50	60	70	80	100	125		


Injection System VME for concrete

Intended use Installation parameters

Steel brush

Threaded rod	Rebar	d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - Ø	Retaining washer
[mm]	[mm]	[mm]	[mm]	[mm]	[-]
M10		12	14	12,5	
M12	10	14	16	14,5	
	12	16	18	16,5	No retaining washer required
M16	14	18	20	18,5	machiel required
	16	20	22	20,5	
M20	20	24	26	24,5	VM-IA 24
M24		28	30	28,5	VM-IA 28
	25	32	34	32,5	VM-IA 32

Table B3: Parameter cleaning and setting tools

Rec. compressed air tool (min 6 bar)

 d_{b}

All drill bit diameters (d₀)

Retaining washer for overhead or horizontal installation Drill bit diameter (d₀): 24 mm to 32 mm

Injection System VME for concrete

Intended use Cleaning and setting tools

Insta	allation instruc	tions							
1		Drill with diamond drill a hole into the base material to the size and required by the selected anchor (Table B1 or Table B2).	embedment depth						
2a	Rinsing with water until clear water comes out.								
2b		Check brush diameter acc. Table B3 and attach the brush to a dril battery screwdriver. Brush the hole with an appropriate sized wire br B3) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension	rush > d _{b,min} (Table						
2c	0	Rinsing again with water until clear water comes out.							
2d	min.6 bar 2x ++++	Attention! Standing water in the bore hole must be removed before. Starting from the bottom or back of the bore hole, blow the hole clear air (min. 6 bar) acc. to Annex B3, a minimum of two times. If the bore hole ground is not reached an extension shall be used.							
2e		Check brush diameter acc. Table B3 and attach the brush to a dril battery screwdriver. Brush the hole with an appropriate sized wire minimum of two times. If the bore hole ground is not reached with the brush, a brush extension	e brush >d _{b,min} a						
2f	min. 6 bar 2×+++	Finally blow the hole clean again with compressed air acc. to Annex minimum of two times. If the bore hole ground is not reached an extension shall be used.	B3 (min. 6 bar) a						
disp	pensing the adhe	ore hole hast to be protected against re-contamination in an appr sive in the bore hole. If necessary, the cleaning has to be repeate sive. In-flowing water must not contaminate the bore hole again.							
3	AN USE OF	Attach a supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. For every working interruption longer than the recommended working well as for new cartridges, a new static-mixer shall be used.	-						
4		Prior to inserting the anchor rod into the filled bore hole, the position depth shall be marked on the anchor rods.	of the embedment						
5	5 Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the adhesive shows a consistent colour.								
Inie	ection System	VME for concrete							
Inte	nded use allation instruction		Annex B4						

Installation instructions (continuation)

6	***	Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation a retaining washer and extension nozzle (Annex B3) shall be used. Observe the working times given in Table B4.
7		Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure positve distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.
8		Be sure that the anchor is fully seated at the bottom of the hole and that excess adhesive is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation fix embedded part (e.g. wedges).
9	X	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).
10		After full curing, the add-on part can be installed with the maximum torque (Table B1) by using a calibrated torque wrench.

Table B4:Working and curing time

Bore hole	Maximum	Minimum curing time				
temperature	working time	dry concrete	wet concrete			
≥ + 5 °C	120 min	50 h	100 h			
≥ + 10 °C	90 min	30 h	60 h			
≥ +20 °C	30 min	10 h	20 h			
≥ + 30 °C	20 min	6 h	12 h			
≥ + 40 °C	12 min	4 h	8 h			

Injection System VME for concrete

Intended use Installation instruction (continuation) Working and curing time

Table C1: Characteristic values for threaded rods under tension loads in uncracked concrete

CONCI					1		1	1	
Anchor size threaded	rod			M 10	M 12	M 16	M 20	M24	
Steel failure									
Characteristic tension resistance, Steel, property class 4.6			[kN]	23	34	63	98	141	
Characteristic tension resi	stance,	N _{Rk,s}	[kN]	29	42	78	122	176	
Steel, property class 5.8 Characteristic tension resi	stance						122		
Steel, property class 8.8		N _{Rk,s}	[kN]	46	67	125	196	282	
Characteristic tension resi Stainless steel A4 and HC property class 70		N _{Rk,s}	[kN]	41	59	110	171	247	
Combined pull-out an	d concrete cone failı	ure							
Characteristic bond resista	ance in non-cracked con	crete C20/	25						
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	9,5	9,0	
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	9,0	10	9,5	9,5	8,5	
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,0	6,0	5,5	
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,0	6,0	5,5	
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0	
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,0	5,0	5,0	
		C30/37	[-]	1,04					
Increasing factor for concr	ete ψ _c	C40/50	[-]			1,08			
		C50/60	[-]		1,10				
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]			10,1			
Concrete cone failure									
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{ucr}	[-]			10,1			
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}					
Spacing			[mm]			3,0 h _{ef}			
Splitting failure									
Edge distance		C cr,sp	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$					
Spacing		S _{cr,sp}	[mm]			2 c _{cr,sp}			
Installation safety factor		Y₂ = Yinst	[-]	1,0		1	,2		

Injection System VME for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in uncracked concrete

Table C2: Characteristic values for threaded rods under shear loads in uncracked concrete

Anchor size threaded rod			M 10	M 12	M 16	M 20	M24
Steel failure without lever arm							
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s}$	[kN]	12	17	31	49	71
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	15	21	39	61	88
Characteristic shear resistance, Steel, property class 8.8	$V_{Rk,s}$	[kN]	23	34	63	98	141
Characteristic shear resistance, Stainless steel A4 and HCR, property class 70	V _{Rk,s}	[kN]	20	30	55	86	124
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	[-]			0,8		
Steel failure with lever arm							
Characteristic bending moment, Steel, property class 4.6	M ⁰ Rk,s	[Nm]	30	52	133	260	449
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	37	65	166	324	560
Characteristic bending moment, Steel, property class 8.8	${\sf M}^0{}_{\sf Rk,s}$	[Nm]	60	105	266	519	896
Characteristic bending moment, Stainless steel A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784
Concrete pry-out failure							
Factor k acc. to TR029 und k_3 acc. to CEN/TS 1992-4-5 Section 6.3.3	k ₍₃₎	[-]			2,0		
Concrete edge failure							
Effective length of anchor	۱ _f	[mm]		_f =	= min(h _{ef} ; 8 d _r	nom)	
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24
Installation safety factor[-]	^γ 2 = Y inst	[-]			1,0		

Injection System VME for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in uncracked concrete

Anchor size reinforc	ing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Steel failure									
Characteristic tension re	esistance	$N_{Rk,s}$	[kN]			As	• f _{uk}		
Combined pull-out a	ind concrete co	ne failure	· ·						
Characteristic bond resis	stance in non-crac	ked concret	te C20/25						
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0
40°C/24°C	flooded bore hol	e τ _{Rk,ucr}	[N/mm²]	9,0	10	10	9,5	9,5	8,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
60°C/43°C	flooded bore hol	e τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0
72°C/43°C	flooded bore hol	e τ _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0
		C30/37	[-]	1,04					
Increasing factor for cor	ncrete ψ _c	C40/50	[-]	1,08					
		C50/60	[-]	1,10					
Factor according to CEN/TS 1992-4-5 Section	on 6.2.2.3	k ₈	[-]	10,1					
Concrete cone failur	е								
Factor according to CEN/TS 1992-4-5 Section	on 6.2.3.1	k _{ucr}	[-]	10,1					
Edge distance		C _{cr,N}	[mm]			1,5	i h _{ef}		
Spacing		S _{cr,N}	[mm]			3,0	h _{ef}		
Splitting failure									
Edge distance		C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$					
Spacing		S _{cr,sp}	[mm]	2 c _{cr,sp}					
Installation safety factor		^γ 2 = Y inst	[-]	1,0			1,2		

Injection System VME for concrete

Performances

Characteristic values of resistance for rebar under tension loads in uncracked concrete

Table C4: Characteristic values for rebar under shear loads in uncracked concrete										
Anchor size reinforcing bar		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25			
Steel failure without lever arm										
Characteristic shear resistance	V _{Rk,s}	[kN]			0,50 ·	A _s ∙ f _{uk}				
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k_2	[-]			0,	8				
Steel failure with lever arm	Steel failure with lever arm									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • V	V _{el} ∙ f _{uk}				
Concrete pry-out failure										
Factor k acc. to TR029 und k ₃ acc. to CEN/TS 1992-4-5 Section 6.3.3	k ₍₃₎	[-]			2,	,0				
Concrete edge failure										
Effective length of anchor	l _f	[mm]	l _f = min(h _{ef} ; 8 d _{nom})							
Outside diameter of anchor	neter of anchor d _{nom} [mm] 10 12 14 16 20					25				
Installation safety factor	^γ 2 = γ inst	[-]			1,	0				

Injection System VME for concrete

Anchor size threa	M 10	M 12	M 16	M 20	M24		
Temperature range	40°C/24°C for nor	-cracked concrete	e C20/25				
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,020	0,024	0,029
Displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114

¹⁾ Calculation of the displacement

 τ : action bond strength $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacement under shear load ¹⁾ (threaded rod) Table C6:

Anchor size threaded rod			M10	M12	M16	M20	M24
Displacement	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Displacement	$\delta_{V\infty}\text{-}\text{factor}$	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

V: action shear load $\delta_{V0} = \delta_{V0}$ -factor · V;

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V;$

Injection System VME for concrete

Table C7: Displacements under tension loads ¹⁾ (rebar)											
Anchor size reinf	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25					
Temperature range 40°C/24°C for non-cracked concrete C20/25											
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,024	0,030			
Displacement	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,061	0,070	0,079	0,096	0,118			
Temperature range 72°C/43°C and 60°C/43°C for non-cracked concrete C20/25											
Displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,015	0,018	0,020	0,023	0,028	0,034			
Displacement	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,060	0,070	0,081	0,091	0,111	0,136			

¹⁾ Calculation of the displacement

τ: action bond strength $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Displacement under shear load ¹⁾ (rebar) Table C8:

Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Displacement	δ_{V0} -factor	[mm/(kN)]	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,08	0,07	0,06	0,06	0,05	0,05

¹⁾ Calculation of the displacement

V: action shear load
$$\begin{split} \delta_{V0} &= \delta_{V0} \text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty} \text{-factor} \cdot V; \end{split}$$

Injection System VME for concrete