

LEISTUNGSERKLÄRUNG

DoP Nr.: MKT-332 - de

♦ Eindeutiger Kenncode des Produkttyps: Injektionssystem VME für Beton

♦ Verwendungszweck(e): Injektionssystem zur Verankerung im Beton,

siehe Anhang B

♦ Hersteller: MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

System(e) zur Bewertung und

Überprüfung der Leistungsbeständigkeit:

♦ Europäisches Bewertungsdokument: ETAG 001-5, 2013-04

Europäische Technische Bewertung: ETA-09/0350, 12.12.2017

Technische Bewertungsstelle: DIBt, Berlin

Notifizierte Stelle(n): NB 1343 – MPA, Darmstadt

♦ Erklärte Leistung(en):

Wesentliche Merkmale	Leistung				
Mechanische Festigkeit und Standsicherheit (BWR1) Charakteristische Widerstände für statische und quasi-statische Einwirkungen und seismische Leistungskategorien C1+C2 Anhang C1 – C7 Anhang C8 – C10 Brandschutz (BWR2) Klasse A1					
Charakteristische Widerstände für statische und quasi-statische Einwirkungen und seismische Leistungskategorien C1+C2	Anhang C1 – C7				
Verschiebungen	Anhang C8 – C10				
Brandschutz (BWR2)					
Brandverhalten	Klasse A1				
Feuerwiderstand	NPD (No Performance Determined) Keine Leistung bestimmt				

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung / den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Stefan Weustenhager (Geschäftsführer)

Weilerbach, 12.12.2017

Dipl.-Ing. Detlef Bigalke (Leiter der Produktentwicklung)

Spezifizierung des Verwendungszwecks

	Ankerstangen	Innengewinde- ankerstangen					
Injektionssystem VME	VMU-A, V-A, VM-A, handelsübliche Gewindestangen	VMU-IG	Betonstahl				
Statische oder quasi-statische Lasten	M8 - M30 (verzinkt, A4, HCR)	IG M6 - IG M20 (galv. verzinkt, A4, HCR)	Ø8 - Ø32				
Seismische Einwirkung Kategorie C1	M8 - M30 (verzinkt ¹⁾ , A4, HCR)	-	Ø8 - Ø32				
Seismische Einwirkung Kategorie C2	M12 und M16 (verzinkt ¹⁾ (Fkl. 8.8), A4, HCR)	-					
	Bewehrter oder unbewehrter Normalbeton, gem. EN 206-1:2000						
Verankerungsgrund	Festigkeitsklassen	C20/25 bis C50/60, gem	. EN 206-1:2000				
	Gerissener und ungerissener Beton						
Temperaturbereich I: -40°C bis +40°C	max. Langzeit-Temperatur +24°C und max. Kurzzeit-Temperatur +40°C						
Temperaturbereich II: -40°C bis +60°C	max. Langzeit-Temperatur +43°C und max. Kurzzeit-Temperatur +60°C						
Temperaturbereich III: -40°C bis +72°C	max. Langzeit-Temperati	ur +43°C und max. Kurzz	eit-Temperatur +72°C				

¹⁾ Ausgenommen feuerverzinkte Ankerstangen

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- · Die Bemessung der Verankerungen unter statischen und quasi-statischen Lasten erfolgt nach:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Fassung September 2010 oder
 - CEN/TS 1992-4:2009
- Die Bemessung der Verankerungen unter seismischer Einwirkung (gerissener Beton) erfolgt nach:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Fassung Februar 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B.: plastischer Gelenke) der Betonkonstruktion anzuordnen
 - Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht erlaubt

Einbau:

- Trockener oder feuchter Beton, sowie wassergefüllte Bohrlöcher (nicht in Seewasser)
- · Bohrlocherstellung durch Hammer- oder Pressluftbohren oder Saugbohren
- Überkopfmontage erlaubt
- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Die Schrauben oder Gewindestangen (inkl. Unterlegscheibe und Mutter), müssen mit dem Material und den Eigenschaften der Innengewindeankerstange übereinstimmen

Injektionssystem VME für Beton	
Verwendungszweck Spezifikationen	Anhang B1

Tabelle B1: Montagekennwerte für Ankerstangen

Ankerstange			M8	M10	M12	M16	M20	M24	M27	M30
Bohrernenndurchmesser $d_0 = [mr$		[mm]	10	12	14	18	24	28	32	35
Effektive Verankerungstiefe	h _{ef,min} =	[mm]	60	60	70	80	90	96	108	120
Ellektive verankerungstiele	h _{ef,max} =	[mm]	96	120	144	192	240	288	324	360
Durchgangsloch im anzuschließenden Bauteil ¹⁾	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Montagedrehmoment	T _{inst} ≤	[Nm]	10	20	40	80	120	160	180	200
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			$n_{ct} + 200$				
minimaler Achsabstand s _{min}		[mm]	40	50	60	80	100	120	135	150
minimaler Randabstand	C _{min}	[mm]	40	50	60	80	100	120	135	150

¹⁾ Für größere Durchgangslöcher siehe TR029 Abschnitt 1.1; für Anwendungen unter seismischer Einwirkung: Durchgangsloch im Anbauteil maximal d_{nom}+1 mm; alternativ ist der Ringspalt zwischen Gewindestange und Anbauteil kraftschlüssig mit Mörtel zu verfüllen.

Tabelle B2: Montage- und Dübelkennwerte für Innengewindeankerstangen

Innengewindeankerstange			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Innendurchmesser	$d_2 =$	[mm]	6	8	10	12	16	20	
Außendurchmesser Ankerstange ²⁾ d _{nom} =		[mm]	10	12	16	20	24	30	
Bohrernenndurchmesser	$d_0 =$	[mm]	12	14	18	24	28	35	
Effektive Verenker veretiefe	h _{ef,min} =	[mm]	60	70	80	90	96	120	
Effektive Verankerungstiefe	h _{ef,max} =	[mm]	120	144	192	240	288	360	
Durchgangsloch im anzuschließenden Bauteil ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22	
Montagedrehmoment	T _{inst} ≤	[Nm]	10	10	20	40	60	100	
Min. Einschraubtiefe	I _{IG}	[mm]	8	8	10	12	16	20	
Mindestbauteildicke h _{mi}		[mm]		30 mm 0 mm	h _{ef} + 2d ₀				
minimaler Achsabstand s _{min} [mm		[mm]	50	60	80	100	120	150	
minimaler Randabstand	C _{min}	[mm]	50	60	80	100	120	150	

¹⁾ Bei größeren Durchgangslöchern siehe TR029, Abschnitt 1.1

Tabelle B3: Montagekennwerte für Betonstahl

Betonstahl	Betonstahl				Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Bohrernenndurchmesser $d_0 = [m]$			12	14	16	18	20	24	32	35	40
Effektive Verenkerungstiefe	h _{ef,min} =	[mm]	60	60	70	75	80	90	100	112	128
Effektive Verankerungstiefe	h _{ef,max} =	[mm]	96	120	144	168	192	240	300	336	384
Mindestbauteildicke	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀						
minimaler Achsabstand s _{min}		[mm]	40	50	60	70	80	100	125	140	160
minimaler Randabstand c _{min} [[mm]	40	50	60	70	80	100	125	140	160

Injektionssystem VME für Beton

Verwendungszweck Montagekennwerte

²⁾ Mit metrischem Außengewinde gemäß EN 1993-1-8:2005+AC:2009

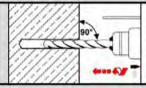
Tabelle B4: Parameter für Reinigungs- und Installationszubehör

Anker- stange	Beton- stahl Ø [mm]	Innen- gewinde- hülse	Bohrer Ø	Bürsten Ø	min. Bürsten Ø	-	Injektionsadapter Einbaurichtung und Verwende von Injektionsadaptern				
[-]	Ø [mm]			d _b [mm]	d _{b,min} [mm]	[-]	1	•	1		
M8	14, 71		10	12	10,5	-	1 1 1				
M10	8	VMU-IG M6	12	14	12,5		Kein Injektionsadapter erforderlich				
M12	10	VMU-IG M8	14	16	14,5						
# 11	12		16	18	16,5	-					
M16	14	VMU-IG M10	18	20	18,5	VM-IA 18					
	16		20	22	20,5	VM-IA 20					
M 20	20	VMU-IG M12	24	26	24,5	VM-IA 24		100			
M 24		VMU-IG M16	28	30	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	alle		
M 27	25		32	34	32,5	VM-IA 32	25011111	20011111			
M 30	28	VMU-IG M20	35	37	35,5	VM-IA 35					
	32		40 41,5 40,5 VM-IA 4			VM-IA 40					

Ausblaspumpe (Volumen 750ml)
Bohrerdurchmesser (d₀): 10 mm bis 20 mm
Bohrlochtiefe $h_0 \le 10 d_{nom}$ siehe Anhang B4

Empfohlene Druckluftpistole (min 6 bar) Bohrerdurchmesser (d₀): alle Durchmesser

Injektionsadapter für Überkopf- oder Horizontalmontage Bohrerdurchmesser (d₀): 18 mm bis 40 mm Reinigungsbürste

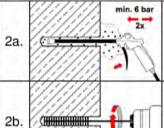

Injektionssystem VME für Beton

Verwendungszweck Reinigungs- und Installationszubehör

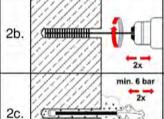
Montageanweisung

Bohrlocherstellung

1.


Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (siehe Anhang B2) und gewählter Bohrlochtiefe erstellen. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Reinigung

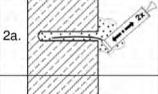

Achtung! Vor dem Reinigen des Bohrloches stehendes Wasser entfernen!

Reinigung mit Druckluft

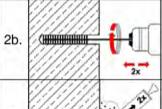
gerissener und ungerissener Beton, alle Durchmesser

Das Bohrloch vom Bohrlochgrund her min. **2x** vollständig mit Druckluft (min. 6 bar) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser db.min ist einzuhalten und zu überprüfen) min. **2x** mittels eines Akkuschraubers oder Bohrmaschine ausbürsten.


Bei tiefen Bohrlöchern Bürstenverlängerung benutzen.

Anschließend das Bohrloch vom Bohrlochgrund her erneut min. **2x** vollständig mit Druckluft (min. 6 bar) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.


2.

Manuelle Reinigung

ungerissener Beton: gerissener Beton: Bohrlochdurchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10$ d_{nom} Bohrlochdurchmesser 14mm $\le d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10$ d_{nom}

Das Bohrloch vom Bohrlochgrund her mit der Ausblaspumpe min. **2x** vollständig ausblasen. Bei tieferen Bohrlöchern sind Verlängerungen zu verwenden.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten und zu überprüfen) min. **2x** mittels eines Akkuschraubers oder Bohrmaschine ausbürsten.

Bei tiefen Bohrlöchern Bürstenverlängerung benutzen.

Anschließend das Bohrloch erneut vom Bohrlochgrund her mit der Ausblaspumpe mind. 2x vollständig ausblasen. Bei tieferen Bohrlöchern sind Verlängerungen zu verwenden.

Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in geeigneter Weise zu schützen. Gegebenenfalls ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrlochs führen.

Injektionssystem VME für Beton

Verwendungszweck Montageanweisung

2c.

Montageanweisung (Fortsetzung)

Injek	tion	
3.	Comment	Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B5) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.
4.	her	Vor dem Injizieren des Mörtels die geforderte Verankerungstiefe auf der Ankerstange oder dem Bewehrungsstab markieren.
5.	min.3x	Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue oder rote Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.
6a.		Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Bei Verankerungstiefen größer 190mm passende Mischverlängerung verwenden. Die temperaturrelevanten Verarbeitungszeiten sind zu beachten (Tabelle B5).
6b.		Für die Horizontal- oder Überkopfmontage sind Injektionsadapter gemäß Anhang B3 und ggf. Mischverlängerungen zu verwenden. Die temperaturrelevanten Verarbeitungszeiten sind zu beachten (Tabelle B5)

Montageanweisung (Fortsetzung)

Setz	en der Ankerstange	
7.		Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Verankerungstiefe einsetzen. Die Ankerstange muss schmutz-, fett- und ölfrei sein.
8.		Nach der Installation muss der Ringspalt komplett mit Mörtel verfüllt sein. Wird kein Mörtel an der Betonoberfläche sichtbar, Ankers sofort heraus ziehen und die Anwendung vor Ende der Verarbeitungszeit wiederholen. Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. mit Holzkeilen).
9.	X	Die angegebene Aushärtezeit muss eingehalten werden. Befestigungselement während der Aushärtezeit (Tabelle B5) nicht bewegen oder belasten.
10.		Ausgetretenen Mörtel entfernen.
11.	T _{INST}	Nach vollständiger Aushärtung kann das Anbauteil mit dem zulässigen Drehmoment T _{inst} nach Tabelle B1 oder B2 montiert werden. Die Mutter muss mit einem kalibrierten Drehmomentschlüssel festgezogen werden.
12.		Ringspalt zwischen Ankerstange und Anbauteil kann optional mit Mörtel verfüllt werden. Dafür Unterlegscheibe durch Verfüllscheibe ersetzen und Mischerreduzierung auf den Statikmischer stecken. Ringspalt ist vollständig verfüllt, wenn Mörtel austritt.

Tabelle B5: Verarbeitungs- und Aushärtezeiten

+5°C bis +9°C +10°C bis +19°C +20°C bis +29°C	Maximale	Mindest-Aushärtezeit					
remperatur im bonnoch	Verarbeitungszeit	trockener Beton	feuchter Beton 100 h				
+5°C bis +9°C	120 min	50 h					
+10°C bis +19°C	90 min	30 h	60 h				
+20°C bis +29°C	30 min	10 h	20 h				
+30°C bis +39°C	20 min	6 h	12 h				
+40°C	12 min	4 h 8 h					
Kartuschentemperatur		+ 5°C bis + 40°C					

ln,	je	kti	or	155	sys	ster	m \	/M	Εſ	für	Be	tor	1
-----	----	-----	----	-----	-----	------	-----	----	----	-----	----	-----	---

Verwendungszweck Montageanweisung (Fortsetzung), Verarbeitungs- und Aushärtezeiten

Tabelle C1: Charakteristische **Stahltragfähigkeiten** für **Ankerstangen** unter Zug- und Querbeanspruchung

Ankers	tange			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Stahlve	ersagen											
Zugbea	nspruchung											
e :=	Stahl, Festigkeitsklasse 4.6 und 4.8	$N_{\text{Rk,s}}$	[kN]	15	23	34	63	98	141	184	224	
tisch igke	Stahl, Festigkeitsklasse 5.6 und 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280	
teris gfäh	Stahl, Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449	
Charakteristische Zugtragfähigkeit	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281	
δĀ	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-	
Ţ	Stahl, Festigkeitsklasse 4.6	γмs,N	[-]				2	,0				
eiwe	Stahl, Festigkeitsklasse 4.8	γ _{Ms,N}	[-]				1	,5				
Teilsicherheitsbeiwert	Stahl, Festigkeitsklasse 5.6	γMs,N	[-]				2	,0				
ierh(Stahl, Festigkeitsklasse 5.8 und 8.8	γ _{Ms,N}	[-]	1,5								
ilsich	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	?мs,N	[-]	2,86								
Tel	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70					1,	87			-	-	
Querbe	anspruchung											
Stahlve	ersagen <u>ohne</u> Hebelarm											
e =	Stahl, Festigkeitsklasse 4.6 und 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
tisch nigke	Stahl, Festigkeitsklasse 5.6 und 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
teris agfäl	Stahl, Festigkeitsklasse 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Charakteristische Quertragfähigkeit	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
ତ ଫ	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-	
Stahlve	rsagen <u>mit</u> Hebelarm											
es	Stahl, Festigkeitsklasse 4.6 und 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900	
isch	Stahl, Festigkeitsklasse 5.6 und 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	112	
teristische emoment	Stahl, Festigkeitsklasse 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	179	
Charakteristisches Biegemoment	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	112	
S B	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-	
T	Stahl, Festigkeitsklasse 4.6	γMs,V	[-]				1,	67				
eiwe	Stahl, Festigkeitsklasse 4.8	γMs,V	[-]				1,	25				
eitsb	Stahl, Festigkeitsklasse 5.6	γMs,V	[-]	1,67								
ıerh∈	Stahl, Festigkeitsklasse 5.8 und 8.8	γMs,V	[-]				1,	25				
Teilsicherheitsbeiwert	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	γMs,V	[-]				2,	38				
Te	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	γMs,V	[-]			1,	56			-	-	

Injektionssystem VME für Beton

Leistungen

Charakteristische **Stahltragfähigkeiten** für **Ankerstangen** unter Zug- und Querbeanspruchung

Tabelle C2: Charakteristische **Zugtragfähigkeit** für **Ankerstangen** unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1 und C2

Ankerstangen				M8	M10	M12	M16	M20	M24	M27	МЗС
Stahlversagen		N.I.	[LAN]				siehe Ta	halla Ca			
		N _{Rk,s}	[kN]								
Charakteristische Zugtra	ıgfähigkeit	N _{Rk,s,C1}	[kN]					N _{Rk,s}			
		$N_{\text{Rk,s,C2}}$	[kN]	N	PD		$N_{Rk,s}$			oestimmt (NPD)
Teilsicherheitsbeiwert		γMs,N	[-]				siehe Ta	abelle C1			
	n durch Herausziehen und B										
Charakteristische Verb	undtragfähigkeit im <u>ungeris</u>	<u>senen</u> B	eton C20/	25							
Temperaturbereich I:	trockener u. feuchter Beton	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	15	15	14	13	12	12	12
40°C / 24°C	wassergefülltes Bohrloch	$ au_{Rk,ucr}$		15	14	13	10	9,5	8,5	7,5	7,0
Temperaturbereich II:	trockener u. feuchter Beton	$\tau_{\rm Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C / 43°C	wassergefülltes Bohrloch	$\tau_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperaturbereich III:	trockener u. feuchter Beton	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C / 43°C	wassergefülltes Bohrloch	$\tau_{Rk,ucr}$		8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Charakteristische Verb	undtragfähigkeit im <u>gerisse</u>	<u>nen</u> Beto	n C20/25								
		$ au_{Rk,cr}$		7,0	7,0	7,5	6,5	6,0	5,5	5,5	5,5
	trockener u. feuchter Beton	τ _{Rk,C1}	[N/mm ²]	5,9	7,0	7,1	6,2	5,7	5,5	5,5	5,5
Temperaturbereich I:		$\tau_{Rk,C2}$	[N/mm ²]		PD	2,4	2,2			bestimmt	
40°C / 24°C		$\tau_{Rk,cr}$	[N/mm ²]	7,0	7,0	7,5	6,0	5,0	4,5	4,0	4,0
	wassergefülltes Bohrloch	$\tau_{Rk,C1}$		5,9	7,0	7,1	5,8	4,8	4,5	4,0	4,0
		τ _{Rk,C2}			D	2,4	2,1			bestimmt	
		$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	3,5	3,5	3,5	3,5
	trockener u. feuchter Beton	τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,8	3,4	3,5	3,5	3,5
Temperaturbereich II:		τ _{Rk,C2}	[N/mm ²]		PD	1,4	1,4			bestimmt	
60°C / 43°C		$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	3,5	3,5	3,5	3,5
	wassergefülltes Bohrloch	τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,8	3,4	3,5	3,5	3,5
		$\tau_{Rk,C2}$	[N/mm ²]		PD	1,4	1,4			bestimmt	
		$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,0	3,0	3,0	3,0
	trockener u. feuchter Beton	τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,4	3,0	3,0	3,0	3,0
Temperaturbereich III:		τ _{Rk,C2}	[N/mm ²]		PD	1,3	1,2			bestimmt	
72°C / 43°C		$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,0	3,0	3,0	3,0
	wassergefülltes Bohrloch	τ _{Rk,C1}		3,2	4,0	3,9	3,4	3,0	3,0	3,0	3,0
		τ _{Rk,C2}	[N/mm ²]	NI	PD	1,3	1,2		Leistung	bestimmt	(NPD
			C25/30					02			
			C30/37					04			
Erhöhungsfaktor für Beto	on	Ψc	C35/45					07			
-		'	C40/50					08			
			C45/55 C50/60					09			
Folder gam CEN/TO 10	92-4-5 ungerissener Beton		C50/60					10),1			
Faktor gem. CEN/TS 199 Kapitel 6.2.2.3	gerissener Beton	k ₈	[-]								
Betonausbruch	genssener beton						/	,2			
Faktor gem. CEN/TS 19	92-4-5 ungerissener Beton	k	[-]				10),1			
Kapitel 6.2.3.1	gerissener Beton	k _{ucr}	[-]					,1 ,2			
Randabstand	genssener beton		[-]					,∠ i h _{ef}			
Achsabstand		C _{cr,N}	[-]					h _{ef}			
Spalten		ocr,N					5,0	er			
oparton	h/h _{ef} ≥ 2,0						1.0	h _{ef}			
Randabstand	$\frac{1/h_{ef}}{2.0>h/h_{ef}}>1.3$	C _{cr,sp}	[mm]								
·······································	→cr,sp	[]	2*h _{ef} (2,5 – h/h _{ef})								
Achsabstand	S _{cr,sp}	[mm]	2,4 h _{et} 2 c _{cr,sp}								
Montagesicherheitsbeiw							or, ap		_		
(trockener und feuchter l		$\gamma_2 = \gamma_{inst}$	[-]	1,2			,4				
Montagesicherheitsbeiw	ert		[-]				- 1	,4			
(wassergefülltes Bohrloo	$\gamma_2 = \gamma_{inst}$	1-1	ı			1	.4				

Injektionssystem VME für Beton

Leistungen

Charakteristische **Zugtragfähigkeit** für **Ankerstangen** unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1 und C2

Tabelle C3: Charakteristische **Querzugtragfähigkeit** für **Ankerstangen** unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1 und C2

						•						
Ankerstangen			M8	M10	M12	M16	M20	M24	M27	M30		
Stahlversagen ohne Hebelarm												
	$V_{\text{Rk},\text{s}}$	[kN]				siehe Ta	abelle C1					
Charakteristische Quertragfähigkeit	V _{Rk,s,C1}	[kN]	0,86	· V _{Rk,s}	(),88 • V _{Rk,}	s		0,80 • V _{Rk,}	s		
	$V_{Rk,s,C2}$	[kN]	NF	PD	0,80	V _{Rk,s}	keine	Leistung	bestimmt ((NPD)		
Teilsicherheitsbeiwert	γMs,V	[-]				siehe Ta	belle C1					
Stahlversagen mit Hebelarm												
	$M^0_{Rk,s}$	[Nm]	Nm] siehe Tabelle C1									
Charakteristisches Biegemoment	M ⁰ _{Rk,s,C1}	[Nm]			leaina	Laiatura	h a ation ant /	(NDD)				
-	M ⁰ _{Rk,s,C2}	[Nm]			кетпе	Leistung	bestimmt ((NPD)				
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe Ta	belle C1					
Betonausbruch auf der lastabgewa	andten Se	ite										
Faktor k in Gleichung (5.7) gemäß Technical Report TR 029 bzw. Faktor k ₃ in Gleichung (27) gemäß CEN/TS 1992-4-5 Kapitel 6.3.3	k ₍₃₎	[-]				2	,0					
Betonkantenbruch												
Effektive Ankerlänge	I _f	[mm]	$I_{f} = min(h_{ef}; 8 d_{nom})$									
Außendurchmesser der Ankerstange	d _{nom}	[mm]	8	10 12 16 20 24 27 30					30			
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]				1	,0					

Injektionssystem VME für Beton	
Leistungen Charakteristische Querzugtragfähigkeit für Ankerstangen unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1 und C2	Anhang C3

Tabelle C4: Charakteristische **Zugtragfähigkeit** für **Innengewindeankerstangen** unter statischer und quasi-statischer Belastung

Innengewindeankerstange	tischer und quasi-stati			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Stahlversagen ¹⁾										
Charakteristische Zugtragfähigk Stahl, Festigkeitsklasse 5.8	eit,	N _{Rk,s}	[kN]	10	18	29	42	79	123	
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]			1,	,5			
Charakteristische Zugtragfähigk Stahl, Festigkeitsklasse 8.8	eit,	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]			1	,5			
Charakteristische Zugtragfähigk Nichtrostender Stahl A4 / HCR,		$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ²⁾	
Teilsicherheitsbeiwert		γMs,N	[-]			1,87			2,86	
	Herausziehen und Betonausb									
Charakteristische Verbundtra	gfähigkeit im <u>ungerissenen</u> Be	ton C20								
Temperaturbereich I:	trockener und feuchter Beton	$\tau_{Rk,ucr}$	[N/mm ²]	15	15	14	13	12	12	
40°C / 24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	14	13	10	9,5	8,5	7,0	
Temperaturbereich II: 60°C / 43°C	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	9,5	9,0	8,5	8,0	7,5	7,5	
	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	9,5	9,0	8,5	7,5	7,0	6,0	
Temperaturbereich III: 72°C / 43°C	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	8,5	8,0	7,5	7,0	7,0	6,5	
	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	8,5	8,0	7,5	7,0	6,0	5,5	
	gfähigkeit im gerissenen Betor			7.0	7.5	C.E.	6.0	E E		
Temperaturbereich I: 40°C / 24°C	trockener und feuchter Beton $\tau_{Rk,cr}$ [N/mm²] 7,0 7,5 6,5 6,0 5,5 wassergefülltes Bohrloch $\tau_{Rk,cr}$ [N/mm²] 7,0 7,5 6,0 5,0 4,5							5,5 4,0		
	wassergefülltes Bohrloch trockener und feuchter Beton	τ _{Rk,cr}	[N/mm ²]	7,0 4,5	4,5	4,0	5,0 3,5	3,5	3,5	
Temperaturbereich II: 60°C / 43°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm²]	4,5	4,5	4,0	3,5	3,5	3,5	
	trockener und feuchter Beton	τ _{Rk,cr}	[N/mm²]	4,0	4,0	3,5	3,0	3,0	3,0	
Temperaturbereich III: 72°C / 43°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm²]	4,0	4,0	3,5	3,0	3,0	3,0	
	wassergerunies bornocri	τ _{Rk,cr}	C25/30	7,0	4,0		02	0,0	0,0	
			C30/37				04			
			C35/45				07			
Erhöhungsfaktor für Beton		Ψc	C40/50				08			
			C45/55				09			
			C50/60				10			
Faktor gem. CEN/TS1992-4-5	ungerissener Beton	1.				10),1			
Kapitel 6.2.2.3	gerissener Beton	k ₈	[-]			7	,2			
Betonausbruch										
Faktor gem. CEN/TS1992-4-5	ungerissener Beton	k _{ucr}	[-]),1			
Kapitel 6.2.3.1	gerissener Beton	k _{cr}	[-]				,2			
Randabstand		C _{cr,N}	[mm]				h _{ef}			
Achsabstand	_	S _{cr,N}	[mm]			3,0	h _{ef}			
Spalten	L/L > 0.0					1.0	h			
Dandahatand	h/h _{ef} ≥ 2,0		[mana]				h _{ef}			
Randabstand	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2*h _{ef} (2,5				
Ashashatand	h/h _{ef} ≤ 1,3		[mm]				h _{ef}			
Achsabstand Montagesicherheitsbeiwert		S _{cr,sp}	[mm]			20	cr,sp			
(trockener und feuchter Beton) Montagesicherheitsbeiwert		$\gamma_2 = \gamma_{inst}$	[-]		1,2			1,4		
(wassergefülltes Bohrloch)	owindestangen (inkl. Scheibe un	$\gamma_2 = \gamma_{inst}$	[-]				,4			

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

2) Für VMU-IG M20: Innengewindeankerstangen: Festigkeitsklasse 50; Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter): Festigkeitsklasse 70

Injektionssystem VME für Beton

Leistungen

Charakteristische Zugtragfähigkeit für Innengewindeankerstangen

unter statischer und guasi-statischer Belastung

Tabelle C5: Charakteristische Querzugtragfähigkeit für Innengewindeankerstangen unter statischer und quasi-statischer Belastung

Innengewindeankerstange			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Stahlversagen ohne Hebelarm1)										
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	61		
Teilsicherheitsbeiwert	γMs.V	[-]			1,	25				
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98		
Teilsicherheitsbeiwert	γMs,V	[-]			Ť,	25				
Charakteristische Quertragfähigkeit, Nichtrostender Stahl A4 / HCR Festigkeitsklasse 70	V _{Rk,s}	[kN]	7-	13	20	30	55	62 ²⁾		
Teilsicherheitsbeiwert	Ύмs,ν	[-]			1,56			2,38		
Stahlversagen mit Hebelarm ¹⁾ Charakteristisches Biegemoment M ⁰ [Nm] 8 19 37 66 167										
Charakteristisches Biegemoment Stahl, Festigkeitsklasse 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325		
Teilsicherheitsbeiwert	YMs,V	[-]	1,25							
Charakteristisches Biegemoment Stahl, Festigkeitsklasse 8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519		
Teilsicherheitsbeiwert	YMs.V	[-]			1,	25				
Charakteristisches Biegemoment Nichtrostender Stahl A4 / HCR Festigkeitsklasse 70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾		
Teilsicherheitsbeiwert	γмs,v	[-]			1,56			2,38		
Betonausbruch auf der lastabgewandte	n Seite									
Faktor k in Gleichung (5.7) gemäß Technical Report TR 029 bzw. Faktor k₃ in Gleichung (27) gemäß CEN/TS 1992-4-5 Kapitel 6.3.3	k ₍₃₎	[-]			2	,0				
Betonkantenbruch										
Effektive Ankerlänge	Ît	[mm]			I _f = min(h	ef; 8 d _{nom})	i; 8 d _{nom})			
Außendurchmesser der Ankerstange	d _{nom}	[mm]	10	12	16	20	24	30		
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]			1	,0				

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

²⁾ Für VMU-IG M20: Innengewindeankerstangen: Festigkeitsklasse 50; Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter): Festigkeitsklasse 70

Injektionssystem VME für Beton

Leistungen

Charakteristische **Querzugtragfähigkeit** für **Innengewindeankerstangen** unter statischer und quasi-statischer Belastung

Tabelle C6: Charakteristische **Zugtragfähigkeit** für **Betonstahl** unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1

Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen												
0	ent 1 1 1	$N_{Rk,s}$	[kN]					A _s • f _{uk} ¹⁾				
Charakteristische Zugtra	gfahigkeit	N _{Rk,s,C1}	[kN]				1	,0 • N _{Rk}	,s			
Stahlspannungsquerschr	nitt	As	[mm²]	50	79	113	154	201	314	491	616	804
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]		•			1,4 ²⁾				
Kombiniertes Versager	durch Herausziehen und B	etonausl	bruch									
	undtragfähigkeit im <u>ungeris</u>			25								
Temperaturbereich I:	trockener u. feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°C / 24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperaturbereich II:	trockener u. feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C / 43°C	wassergefülltes Bohrloch	,,,,,	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
	trockener u. feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
Temperaturbereich III: 72°C / 43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}		7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		τ _{Rk,ucr}		7,5	7,5	7,5	7,0	7,0	0,0	3,3	3,0	4,5
Charakteristische verb	undtragfähigkeit im gerisse			7.0	7.0	7.5	7.0	0.5	0.0			
	trockener u. feuchter Beton	τ _{Rk,cr}	[N/mm²]	7,0	7,0	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperaturbereich I:		τ _{Rk,C1}	[N/mm²]	5,9	7,0	7,1	6,4	6,2	5,7	5,5	5,5	5,5
40°C / 24°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm ²]	7,0	7,0	7,5	6,5	6,0	5,0	4,5	4,0	4,0
		τ _{Rk,C1}	[N/mm ²]	5,9	7,0	7,1	6,0	5,7	4,8	4,5	4,0	4,0
	trockener u. feuchter Beton	τ _{Rk,cr}	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperaturbereich II:		τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,5
60°C / 43°C v	wassergefülltes Bohrloch	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	wassergeruntes bermeen	τ _{Rk,C1}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,0
	trockener u. feuchter Beton	$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperaturbereich III:	trockerier u. reachter Beton	τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
72°C / 43°C	wassargefülltes Behrloch	$\tau_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	wassergefülltes Bohrloch	τ _{Rk,C1}	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
			C25/30					1,02				
			C30/37					1,04				
Erhöhungsfaktor für Beto	on	Ψς	C35/45					1,07				
9		1	C40/50					1,08				
			C45/55 C50/60					1,09 1,10				
Faktor gem. CEN/TS199	2-4-5 ungerissener Beton							10,1				
Kapitel 6.2.2.3	gerissener Beton	k ₈	[-]					7,2				
Betonausbruch	gonoconon – otom							- ,-				
Faktor gem. CEN/TS199	2-4-5 ungerissener Beton	k _{ucr}	[-]					10,1				
Kapitel 6.2.3.1	gerissener Beton	k _{cr}	[-]					7,2				
Randabstand	•	C _{cr,N}	[mm]					1,5 h _{ef}				
Achsabstand		S _{cr,N}	[mm]					3,0 h _{ef}				
Spalten												
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Randabstand	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]				2*h _e	_f (2,5 – ł	n/h _{ef})			
	h/h _{ef} ≤ 1,3							2,4 h _{ef}				
Achsabstand	S _{cr,sp}	[mm]					2 c _{cr,sp}					
Montagesicherheitsbeiwe (trockener und feuchter E	$\gamma_2 = \gamma_{inst}$	[-]			1,2				1	,4		
Montagesicherheitsbeiwe (wassergefülltes Bohrloc	$\gamma_2 = \gamma_{inst}$	[-]					1,4					

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen ²⁾ Sofern andere nationalen Regelungen fehlen

Injektionssystem VME für Beton

Leistungen

Charakteristische Zugtragfähigkeit für Betonstahl unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1

Tabelle C7: Charakteristische Querzugtragfähigkeit für Betonstahl unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]				0,50	O·A _s ·	$f_{uk}^{1)}$				
Charakteristische Quertragranigkeit	$V_{Rk,s,C1}$	[kN]	0,80	V _{Rk} ,s			0,	88 • V _R	k,s			
Stahlspannungsquerschnitt	As	[mm²]	50	79	113	154	201	314	491	616	804	
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,5 ²⁾					
Stahlversagen mit Hebelarm												
M ⁰ _{Rk,s} [Nm] 1,2 • W _{el} • f _{uk} ¹⁾												
Charakteristisches Biegemoment	M ⁰ _{Rk,s,C1}	[Nm]		keine Leistung bestimmt (NPD)								
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217	
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,5 ²⁾					
Betonausbruch auf der lastabgewandten S	Seite											
Faktor k in Gleichung (5.7) Technical Report gemäß TR 029 bzw. Faktor k₃ in Gleichung (27) gemäß CEN/TS 1992-4-5 Kapitel 6.3.3	k ₍₃₎	[-]					2,0					
Betonkantenbruch												
Effektive Ankerlänge	If	[mm]	$I_{f} = min(h_{ef}; 8 d_{nom})$									
Außendurchmesser des Betonstahls	d_{nom}	[mm]	8	10	12	14	16	20	25	28	32	
Montagesicherheitsbeiwert	neitsbeiwert $\gamma_2 = \gamma_{\text{inst}}$ [-] 1,0											

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen 2) Sofern andere nationalen Regelungen fehlen

Tabelle C8: Verschiebung unter Zugbeanspruchung¹⁾ (Ankerstange)

Ankerstange			М8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton C	20/25 unter	statischer und	quasi-sta	atischer E	Belastunç	3				
Temperaturbereich I:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°C / 24°C	$\delta_{N_{\infty}}\text{-Faktor}$	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperaturbereich II:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60°C / 43°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Temperaturbereich III:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
72°C / 43°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Gerissener Beton C20	/25 unter sta	atischer und qu	asi-statis	cher Bel	astung					
Temperaturbereich I:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,032	0,032	0,032	0,037	0,042	0,048	0,053	0,058
40°C / 24°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperaturbereich II:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
60°C / 43°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperaturbereich III:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,067
72°C / 43°C	$\delta_{N_{\infty}}\text{-Faktor}$	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Gerissener Beton C20	/25 unter se	ismischer Bela	stung C2							
$\begin{array}{cc} \text{Alle} & & \delta_{\text{N,seis}} \\ \text{Temperatur-} & & \end{array}$	(DLS) -Faktor	[mm/(N/mm²)]	NF	פח	0,03	0,05	Kaina	Leistung	haetimmt	(NPD)
	(ULS) -Faktor	[mm/(N/mm²)]	INF		0,06	0,09	Keine	Leistung		(141-10)

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \ \cdot \tau; \qquad \delta_{\text{N,seis(DLS)}} = \delta_{\text{N,seis(DLS)}}\text{-Faktor} \ \cdot \tau;$

τ: einwirkende Verbundspannung unter Zugbeanspruchung

 $\delta_{\text{N}_{\infty}} = \delta_{\text{N}_{\infty}}\text{-Faktor } \cdot \tau; \qquad \delta_{\text{N,seis(ULS)}} = \delta_{\text{N,seis(ULS)}}\text{-Faktor } \cdot \tau;$

Tabelle C9: Verschiebung unter Querbeanspruchung¹⁾ (Ankerstange)

Ankerstange				М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Ungerissener ur	nd geri	ssener Beto	n C20/25 unter	statisch	er und qu	asi-statis	scher Bel	astung			
Alle		δ_{V0} -Faktor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Temperaturbereio	che	$\delta_{V\infty}$ -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Gerissener Beto	n C20	/25 unter sei	smischer Bela	stung C2							
Alle	δ _{V,seis(DLS)} -Faktor [mm/(kN)]		[mm/(kN)]	NIE.	פח	0,2	0,1	Kalaa Lalabaa kaatla		octimmt	(NIDD)
		NPD		0,2	0,1	Keine Leistung bestimmt (NPE			(INFD)		

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-Faktor} \ \cdot \text{V}; \qquad \delta_{\text{V,seis}(\text{DLS})} = \delta_{\text{V,seis}(\text{DLS})}\text{-Faktor} \ \cdot \text{V};$

V: einwirkende Querkraft

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor} \quad V; \qquad \delta_{V,seis(ULS)} = \delta_{V,seis(ULS)}\text{-Faktor} \quad V;$

Injektionssystem VME für Beton

Leistungen

Verschiebungen (Ankerstange)

Tabelle C10: Verschiebung unter Zugbeanspruchung¹⁾ (Innengewindeankerstange)

Innengewindeankersta	nge		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Ungerissener Beton C2	0/25 unter st	atischer und qua	si-statisch	er Belastun	g			
Temperaturbereich I:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,013	0,015	0,020	0,024	0,029	0,035
40°C / 24°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114	0,140
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	0,043
60°C / 43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	0,161
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	0,043
72°C / 43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	0,161
Gerissener Beton C20/2	25 unter stati	scher und quasi	-statischer	Belastung				
Temperaturbereich I:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,032	0,032	0,037	0,042	0,048	0,058
40°C / 24°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,037	0,043	0,049	0,055	0,067
60°C / 43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,037	0,043	0,049	0,055	0,067
72°C / 43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}\text{-Faktor} \cdot \tau; \qquad \qquad \tau\text{: einwirkende Verbundspannung unter Zugbeanspruchung}$

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C11: Verschiebung unter Querbeanspruchung¹⁾ (Innengewindeankerstange)

Innengewindeankerstan	ge		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Ungerissener und geriss	sener Beton	C20/25 unter s	tatischer u	nd quasi-sta	atischer Bel	astung		
Alla Tamparaturbaraiaha	δ_{V0} -Faktor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
Alle Temperaturbereiche	δ_{V_∞} -Faktor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querkraft

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -Faktor · V;

Injektionssystem VME für Beton

Leistungen

Verschiebungen (Innengewindeankerstange)

Tabelle C12: Verschiebung unter Zugbeanspruchung¹⁾ (Betonstahl)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Beton Ca	20/25 unter s	statischer und q	uasi-sta	itischer	Belastu	ng					
Temperaturbereich I:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C / 24°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperaturbereich II:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C / 43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C / 43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Gerissener Beton C20/	25 unter sta	tischer und qua	si-statis	cher Be	lastung						
Temperaturbereich I:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,032	0,032	0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C / 24°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C / 43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C / 43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Berechnung der Verschiebung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

 $\delta_{N0} = \delta_{N0}\text{-Faktor} \ \cdot \tau; \\ \tau : \text{einwirkende Verbundspannung unter Zugbeanspruchung}$

Tabelle C13: Verschiebung unter Querbeanspruchung¹⁾ (Betonstahl)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Für Beton C20/25 unter statischer und quasi-statischer Belastung											
Alle Temperaturbereiche	δ_{V0} -Faktor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

Berechnung der Verschiebung $\delta_{V0} = \delta_{V0}\text{-Faktor} \quad V; \qquad \text{V: einwirkende Querkraft}$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -Faktor · V;

Injektionssystem VME für Beton

Leistungen

Verschiebungen (Betonstahl)