

DECLARACIÓN DE PRESTACIONES

DoP No.: MKT-2.1-601_es

♦ Código de identificación única del

producto tipo:

Sistema de inyección VMH para hormigón

♦ Usos previstos:
Sistema de inyección para anclar en concreto,

ver Anexo / Annex B

♦ Fabricante: MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

 Sistema o sistemas de evaluación y Verificación de la constancia de las

prestaciones:

1

♦ Documento de evaluación europeo: EAD 330499-01-0601

Valuación técnica europea: ETA-17/0716, 11.05.2021

Organismo de evaluación técnica: DIBt, Berlin

Organismos notificados: NB 2873 – Technische Universität Darmstadt

♦ Prestaciones declaradas:

Características esenciales	Prestaciones							
Resistencia mecánica y estabilidad (BWR1)								
Resistencias características bajo carga de tracción (efectos estáticos y cuasiestáticos)	Anexo / Annex B3, C1, C3, C4, C5, C8, C9, C11, C12							
Resistencias características bajo tensión transversal (efectos estáticos y cuasiestáticos)	Anexo / Annex C2, C6, C10, C13							
Desplazamientos	Anexo / Annex C15 – C17							
Resistencia característica y desplazamientos para rendimiento sísmico categoría C1 + C2	Anexo / Annex C7, C14, C15							
Higiene, salud y medio ambiente (BWR 3)								
Contenido, emisión y / o liberación de sustancias peligrosas	Prestación no determinada							

Las prestaciones del producto identificado anteriormente son conformes con el conjunto de prestaciones declaradas. La presente declaración de prestaciones se emite, de conformidad con el Reglamento (EU) no 305/2011, bajo la sola responsabilidad del fabricante arriba identificado.

Firmado por y en nombre del fabricante por:

Stefan Weustenhagen (Director general)

Weilerbach, 11.05.2021

Dipl.-Ing. Detlef Bigalke

(Director de Desarrollo de Productos)

El original de esta declaración de rendimiento fue escrito en alemán. En caso de desviaciones en la traducción, la versión alemana es.

Specification of intended use

Static and quasi-static action	working life 50 years	working life 100 years					
Threaded rod Internally threaded anchor rod Rebar	M8 - M30 VMU-IG M6 - VMU-IG M20 Ø8 - Ø32						
	cracked or und	cracked concrete					
Base material	strength classes C20/25 to C50/60 compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013+A1:2016						
Hole drilling	hammer drilling / compresse	ed air drilling / vacuum drilling					
Temperature range 1)	I: -40°C to +40°C II: -40°C to +80°C III: -40°C to +120°C IV: -40°C to +160°C	I: -40°C to +40°C II: -40°C to +80°C					

Seismic action	performance category C1	performance category C2				
Threaded rod Rebar	M8 - M30 Ø8 - Ø32	M12 - M24 				
Base material	cracked or uncracked concrete strength classes C20/25 to C50/60 compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013+A1:2016					
Hole drilling	hammer drilling / compressed air drilling / vacuum drilling					
Temperature range 1)	I: -40°C to +40°C II: -40°C to +80°C III: -40°C to +120°C IV: -40°C to +160°C	I: -40°C to +40°C II: -40°C to +80°C III: -40°C to +120°C IV: -40°C to +160°C				

1) Temperature Range I: max. long term temperature +24°C and max. short term temperature +40°C Temperature Range II: max. long term temperature +50°C max. short term temperature +80°C and Temperature Range III: max. long term temperature +72°C max. short term temperature +120°C and Temperature Range IV: max. long term temperature +100°C max. short term temperature +160°C and

Injection Sy	/stem VMH	I for concrete	Э
--------------	-----------	----------------	---

Specification of intended use

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions; all materials
- For all other conditions:

Intended use of Materials according to Annex A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry or wet concrete or waterfilled drill holes (not seawater)
- · Hole drilling by hammer or compressed air drill or vacuum drill mode
- Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the responsibility of the person competent for technical matters on site
- The injection mortar is assessed for installation at minimum concrete temperature of -5°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.
- Internally threaded anchor rod: screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Injection System VMH for concrete	
Intended Use Specifications	Annex B2

Table B1: Installation parameters for threaded rods

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of thread	ded rod	$d=d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole	diameter	d_0	[mm]	10	12	14	18	22	28	30	35
Effective anchorage	vo donth —	$h_{\text{ef,min}}$	[mm]	60	60	70	80	90	96	108	120
Ellective anchorag	je depin —	$h_{\text{ef},\text{max}}$	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in	Pre-setting installation	d _f ≤	[mm]	9	12	14	18	22	26	30	33
the fixture 2)	Through set installation	ting d _f ≤	[mm]	12	14	16	20	24	30	33	40
Maximum installation torque max.T _{inst} ≤		[Nm]	10	20	40 (35) ¹⁾	60	100	170	250	300	
Minimum thickness of member h _{min} [n		[mm]		₁ + 30 m 2 100 mr				h _{ef} + 2d ₀)		
Minimum spacing s _{min} [[mm]	40	50	60	75	95	115	125	140	
Minimum edge dis	tance	Cmin	[mm]	35	40	45	50	60	65	75	80

¹⁾ max. installation torque for M12 with steel grade 4.6

Table B2: Installation parameters for internally threaded anchor rods

Internally threaded anchor ro	d		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internally timeaded anchor to				IG-IVI 0	1G-101 10	IG-IVI 12	1G-101 10	1G-101 20
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod	$d=d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective encharage depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective anchorage depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum installation torque	max.T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	l _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	Smin	[mm]	50	60	75	95	115	140
Minimum edge distance	Cmin	[mm]	40	45	50	60	65	80

¹⁾ with metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of rebar	d=d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter ¹⁾	d₀	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effective anchorage depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Effective anchorage depth -	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	1	· 30 mm 00 mm				h _{ef}	+ 2d ₀			
Minimum spacing	Smin	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	Cmin	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ for diameter Ø8, Ø10, Ø12, Ø24 and Ø25 both nominal drill hole diameter can be used

Injection System VMH for concrete

Intended use

Installation parameters

²⁾ for applications under seismic loading the diameter of clearance hole in the fixture shall be at maximum d_{nom} + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar

Table B4: Parameter cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	DriⅡ bit Ø	Brush Ø	min. Brush Ø
				d _b	
[-]	[-]	Ø [mm]	d ₀ [mm]	d₀ [mm]	d _{b,min} [mm]
M8		8	10	11,5	10,5
M10	VMU-IG M 6	8 / 10	12	13,5	12,5
M12	VMU-IG M 8	10 / 12	14	15,5	14,5
		12	16	17,5	16,5
M16	VMU-IG M10	14	18	20,0	18,5
		16	20	22,0	20,5
M20	VMU-IG M12		22	24,0	22,5
		20	25	27,0	25,5
M24	VMU-IG M16		28	30,0	28,5
M27		24 / 25	30	31,8	30,5
		24 / 25	32	34,0	32,5
M30	VMU-IG M20	28	35	37,0	35,5
		32	40	43,5	40,5

Table B5: Retaining washer

Drill bit Ø	4	Installation direction and use					
d ₀ [mm]	[-]	•	→	1			
10							
12			0 washar				
14		-	y washer iired				
16							
18	VM-IA 18						
20	VM-IA 20						
22	VM-IA 22						
25	VM-IA 25	h _{ef} >	h _{ef} >	all			
28	VM-IA 28	250mm	250mm	all			
30	VM-IA 30						
32	VM-IA 32						
35	VM-IA 35						
40	VM-IA 40						

Vacuum drill bit

Drill bit diameter (d₀): all diameters Vacuum drill bit (MKT Hollow drill bit SB, Würth Saugbohrer or Heller Duster Expert) and a class M vacuum with minimum negative pressure of 253 hPa and a flow rate of minimum 42 l/s (150 $\text{m}^3\text{/h}$)

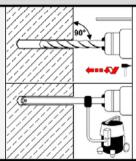
Recommended compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

Blow-out pump (volume 750ml)

Drill bit diameter (d₀): 10 mm to 20 mm Drill hole depth (h₀): ≤ 10 d_{nom} for uncracked concrete

Injection System VMH for concrete


Intended Use

Cleaning and setting tools

Installation Instructions

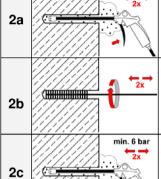
Drilling of the hole

1

Hammer drill or compressed air drill

Drill with hammer drill or compressed air drill a hole into the base material to the size required by the selected anchor (Table B1, B2 or B3). Continue with step 2. In case of aborted drill hole, the drill hole shall be filled with mortar.

Vacuum drill bit: see Annex B4


Drill hole into the base material to the embedment size and embedment depth required by the selected anchor (Table B1, B2 or B3). This drilling system removes dust and cleans the drill hole during drilling. Continue with step 3. In case of aborted hole, the drill hole shall be filled with mortar.

Cleaning (not applicable when using a vacuum drill)

Attention! Standing water in the drill hole must be removed before cleaning!

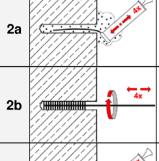
Cleaning with compressed air

all substrates and diameters according to Annex B1

Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) a minimum of **two** times until return air stream is free of noticeable dust.

If the drill hole ground is not reached, an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $\geq d_{b,min}$ (Table B4) a minimum of **two** times.


If the drill hole ground is not reached with the brush, an appropriate brush extension must be used.

Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) again a minimum of **two** times until return air stream is free of noticeable dust.

If the drill hole ground is not reached, an extension must be used.

Manual cleaning

uncracked concrete, dry and wet drill holes; drill hole diameter d₀ ≤ 20mm and drill hole depth h₀ ≤ 10 dnom

Starting from the bottom or back of the drill hole, blow out the hole with the blow-out pump a minimum of **four** times until return air stream is free of noticeable dust.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $\geq d_{b,min}$ (Table B4) a minimum of **four** times.

If the drill hole ground is not reached with the brush, an appropriate brush extension must be used.

Starting from the bottom or back of the drill hole blow out the hole again a minimum of **four** times until return air stream is free of noticeable dust.

After cleaning, the drill hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the drill hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the drill hole again.

Injection System VMH for concrete

Intended Use

2c

Installation instructions

Installation instructions (continuation)

lnj	ection	
3	No. of the last of	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B6) as well as for new cartridges, a new static-mixer shall be used.
4	hef	Prior to inserting the rod into the filled drill hole, the position of the embedment depth shall be marked on the threaded rod or rebar
5	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.
6a		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. If the drill hole ground is not reached, an appropriate extension nozzle shall be used. Observe working times given in Table B6.
6b		Retaining washer and mixer nozzle extensions shall be used according to Table B5 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and anchorage depth hef > 250mm • Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Installation instructions (continuation) Setting the fastening element

Push the fastening element into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. 7 The anchor shall be free of dirt, grease, oil or other foreign material. After installation, the annular gap between anchor rod and concrete must be completely filled with mortar, in the case of push-through installation also in the 8 fixture. If these requirements are not fulfilled, repeat application before end of working time! For overhead installation, the anchor should be fixed (e.g. by wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. 9 Do not move or load the anchor until it is fully cured (attend Table B6). 10 Remove excess mortar. T_{inst} The fixture can be mounted after curing time. Apply installation torque ≤T_{inst} 11 according to Table B1 or B2.

Table B6: Working time and curing time

Compress ton	an a vatura	Mayling time	Minimum curing time				
Concrete ten	nperature	Working time	dry concrete	wet concrete			
-5°C to	-1°C	50 min	5 h	10 h			
0∘C to	+4°C	25 min	3,5 h	7 h			
+5°C to	+9°C	15 min	2 h	4 h			
+10°C to	+14°C	10 min	1 h	2 h			
+15°C to	+19°C	6 min	40 min	80 min			
+20°C to	+29°C	3 min	30 min	60 min			
+30°C to	+40°C	2 min	30 min	60 min			
Cartridge ter	nperature	+ 5°C to + 40°C					

with bore and plug on reducing adapter on static mixer.

Annular gap is completely filled, when excess mortar seeps out.

In case of pre-setting installation, the annular gap between anchor rod and fixture may optionally be filled with mortar. Therefore, replace regular washer by washer

Injectio	n System	VMH for	concrete

Intended Use

12

Installation instructions (continuation) / Working and curing time

Table C1: Characteristic steel resistance for threaded rods under tension load

Threa	ded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel	failure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	cteristic resistance under tension	load 1)									
þe	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
zin	Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
steel	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Stainless steel	A2, A4 and HCR Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Stair	A4 and HCR Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	_3)	_3)
Partia	I factor ²⁾										
	Property class 4.6	γMs,N	[-]	2,0							
fed	Property class 4.8	γMs,N	[-]	1,5							
Steel, zinc plated	Property class 5.6	γMs,N	[-]	2,0							
zin	Property class 5.8	γMs,N	[-]	1,5							
	Property class 8.8	γMs,N	[-]	1,5							
steel	A2, A4 and HCR Property class 50	γMs,N	[-]	2,86							
Stainless steel	A2, A4 and HCR Property class 70	γMs,N	[-]	1,87					_3)		
Stair	A4 and HCR Property class 80	γMs,N	[-]			1	,6			_3)	_3)

¹⁾ the characteristic resistances apply for all anchor rods with the cross sectional area As specified here: VMU-A, V-A, VM-A. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid. ²⁾ in absence of other national regulations

³⁾ Anchor type not part of the ETA

Table C2: Characteristic steel resistance for threaded rods under shear load

Threade	ed rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel fai	ilure										
Cross se	ectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Charact	eristic resistances under shear load	J 1)			•						'
Steel fa	ilure <u>without</u> lever arm										
р	Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	V^0 Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
zin	Property class 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
SS	A2, A4 and HCR, property class 50	V^0 Rk,s	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, property class 70		[kN]	13	20	30	55	86	124	_3)	_3)
A4 and HCR, property class 80		V^0 Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
Steel fai	ilure <u>with</u> lever arm						•	•			
p	Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
zin	Property class 8.8	M^0 Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
SS	A2, A4 and HCR, property class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Stainless steel	A2, A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
Sta	A4 and HCR, property class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Partial f	actor 2)										
	Property class 4.6	γMs,V	[-]				1,	67			
el, lated	Property class 4.8	γMs,V	[-]	1,25							
Steel, nc plate	Property class 5.6	γMs,V	[-]				1,	67			
Property class 5.6 Property class 5.8		γMs,V	[-]				1,	25			
	Property class 8.8	γMs,V	[-]				1,	25			
SS	A2, A4 and HCR, property class 50	γMs,V	[-]				2,	38			
Stainless steel	A2, A4 and HCR, property class 70	γMs,V	[-]			1	,56			_3)	_3)
St	A4 and HCR, property class 80	γMs,V	[-]	1,33					_3)	_3)	

¹⁾ the characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid

Injection System VMH for concrete

Performance

Characteristic values for threaded rods under shear loads

²⁾ in absence of other national regulations

³⁾ Anchor type not part of the ETA

Table C3: Characteristic values of concrete cone failure and splitting failure

Threaded rods / I	nternally threaded ancl	all sizes		
Concrete cone fa	ilure			
Easter k	uncracked concrete	$k_{\text{ucr},N}$	[-]	11,0
Factor k ₁	cracked concrete	k cr,N	[-]	7,7
Edge distance		C _{cr} ,N	[mm]	1,5 • h _{ef}
Spacing		Scr,N	[mm]	2,0 • Ccr,N
Splitting failure				
Characteristic resis	stance	N^0 Rk,sp	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c})
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}
Edge distance	2,0> h/h _{ef} > 1,3	Ccr,sp	[mm]	2 • h _{ef} (2,5 - h / h _{ef})
	h/h _{ef} ≤ 1,3			2,4 · h _{ef}
Spacing		S _{cr,sp}	[mm]	2,0 • C _{cr,sp}

Injection System VMH for concrete

Characteristic values of concrete cone failure and splitting failure

Table C4: Characteristic values of tension loads for threaded rods, static and quasi-static action, working life 50 years

Threaded rod		M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure											
Characteristic re	esistance	N _{Rk,s}	[kN]					• f _{uk} Table C	4		
Partial factor		γMs,N	[-]			U	see Ta		1		
	out and concrete failu		[[]				000.0				
•	bond resistance in und		concrete	C20/25							
	I 40°C / 24°C			17	17	16	15	14	13	13	13
Temperature	II 80°C / 50°C		EN L/	17	17	16	15	14	13	13	13
range	III 120°C / 72°C	τ _{Rk,ucr}	[N/mm²]	15	14	14	13	12	12	11	11
	VI 160°C / 100°C	-		12	11	11	10	9,5	9,0	9,0	9,0
Characteristic I	ond resistance in <u>cra</u>	cked co	ncrete C2	0/25							
	I 40°C / 24°C			7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature	II 80°C / 50°C		[N.1/2]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
range	III 120°C / 72°C	TRk,cr	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
	VI 160°C / 100°C			5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Reduction factor ψ^0_{sus} in concrete C20/25											
	I 40°C / 24°C			0,90							
Temperature	II 80°C / 50°C	→ 11(0 on a)	[-]	0,87							
range	III 120°C / 72°C		'1		0,75 0,66						
	VI 160°C / 100°C		C25/30								
			C30/37	1,02 1,04							
1			C35/45					07			
Increasing factor	rs for concrete	Ψс	C40/50				1,	08			
			C45/55	1,09							
			C50/60				1,	10			
Concrete cone	<u> </u>				T-	hla 00					
Relevant param Splitting failure					see 12	able C3					
Relevant param							see Ts	able C3			
Installation fact							300 18	ible 00			
	vacuum cleaning	T					1	,2			
dry or wet — concrete —	manual cleaning	┥	[-]		1,	,2		.	rformar	nce ass	essed
(compressed air cleaning						1	,0			
water filled drill hole	compressed air cleaning	γinst	[-]				1	,4			

Performance

Characteristic values of tension loads for threaded rods, working life 50 years

Table C5: Characteristic values of tension loads for threaded rods, static and quasi-static action, working life 100 years

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure												
Characteristic re	esistance	$N_{Rk,s}$	[kN]			0		• f _{uk} able C	1			
Partial factor		γMs,N	[-]				see Ta		1			
	out and concrete fa	<u> </u>					000 10					
-	bond resistance in		concrete (C20/25								
				17		10	15	1.4	10	10	10	
Temperature range		TRK UCT 100	_{r,100} [N/mm²]		17	16	15	14	13	13	13	
	II 80°C / 50°C			17	17	16	15	14	13	13	13	
Characteristic	bond resistance in		ncrete C2	0/25						I		
Temperature	I 40°C / 24°C	τ _{Rk,cr,100}	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5	
range	II 80°C / 50°C	, thk,cr, roo	[14/11111]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5	
	C25/30	1,02										
			C30/37	1,04								
			C35/45	1,07								
Increasing facto	rs for concrete	Ψc	C40/50	1,08								
			C45/55	1,09								
			C50/60	1,10								
Concrete cone	failure											
Relevant param	neter			see Table C3								
Splitting failure												
Relevant paran		see Table C3										
Installation fac	tor											
	vacuum cleaning	1					1	,2				
dry or wet	manual cleaning	γ _{inst}	[-]		1	,2		No pe	rformar	nce ass	essed	
concrete —	compressed air	r / / / / /	"				1	,0				
water filled	cleaning						Į.	,,,				
drill hole	compressed air cleaning		[-]				1	,4				

Injection System VMH for concrete	
Performance Characteristic values of tension loads for threaded rods, working life 100 years	Annex C5

Table C6: Characteristic values of shear loads for threaded rods, static and quasi-static action

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure <u>without</u> lever arm										
Characteristic resistance Steel, zinc plated Class 4.6, 4.8, 5.6 and 5.8	$V^0_{Rk,s}$	[kN]		0,6 ⋅ A _s ⋅ f _{uk} or see Table C2						
Characteristic resistance Steel, zinc plated, class 8.8, stainless steel A2, A4 and HCR	V^0 Rk,s	[kN]	0,5 ⋅ A _s ⋅ f _{uk} or see Table C2							
Ductility factor	k ₇	[-]	1,0							
Partial factor	γMs,V	[-]	see Table C2							
Steel failure with lever arm										
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	1,2 • W _{el} • f _{uk} or see Table C2							
Elastic section modulus	Wel	[mm³]	31 62 109 277 541 935 1387 1874					1874		
Partial factor	γMs,V	[-]	see Table C2							
Concrete pry-out failure										
Pry-out factor	k ₈	[-]	2,0							
Concrete edge failure										
Effective length of anchor	lf	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ;300mm)							
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]	1,0							

Injection	System	VMH for	concrete
-----------	--------	---------	----------

Characteristic values of shear loads for threaded rods

Table C7: Characteristic values of tension loads for threaded rods, seismic action (performance category C1 + C2), working life 50 and 100 years

Threaded rod						M10	M12	M16	M20	M24	M27	M30
Steel failure												
N _{Rk,s,C1}				[kN]				1,0 •	N _{Rk,s}			
Characteristic re	esistar	ice ——	N _{Rk,s,C2}	[kN]	-	.1)		1,0 •	N _{Rk,s}		_	1)
Partial factor			γMs,N	[-]				see Ta	able C1			
Combined pull	-out a	nd concrete failu	ire									
Characteristic	bond	resistance in con	crete C20	0/25 to C5	0/60							
	l:	40°C / 24°C	τ _{Rk,C1}	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
_	١.	40 0 / 24 0	τRk,C2	[N/mm ²]	1	_1)		3,6 3,5 3,3 2,3		2,3	_1)	
	II:	80°C / 50°C	τ _{Rk,C1}	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature	11.	80°C / 50°C	τ _{Rk,C2}	[N/mm²]	l	1)	3,6	3,5	3,3	2,3	-	1)
range	III:	120°C / 72°C	τ _{Rk,C1}	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
	111.	120°0 / 72°0	τRk,C2	[N/mm ²]	1	.1)	3,1	3,0	2,8	2,0	-	1)
	VI:	160°C / 100°C	τRk,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
			τ _{Rk,C2}	[N/mm ²]	I	1)	2,5	2,7	2,5	1,8	-	1)
Installation fac	tor											
Compressed air dry or wet concrete		rete	[-]				1	,0				
cleaning		water filled drill h	nole ^{γinst}	נ־ו					,4			
Vacuum cleanir	ng	dry or wet conc	rete γ _{inst}	[-]	1,2							

¹⁾ No performance assessed

Table C8: Characteristic values of shear loads for threaded rods, seismic action (performance category C1 + C2)

Threaded rod	M8	M10	M12	M16	M20	M24	M27	M30					
Steel failure v	<u>vithout</u> lever arm												
V _{Rk,s,C1}				[kN]	0,7 • V ⁰ Rk,s								
Characteristic resistance V _{Rk,s,C2}			Rk,s,C2	[kN]	-1) 0,7 • V ⁰ Rk,s					١.	1)		
Partial factor			γMs,N	[-]				see Ta	ıble C2				
	without hole clearance α _{gap} [-] 1,0				,0								
Factor for with hole clearance anchorages between fastener and α _{gap} fixture				[-]				0	,5				

¹⁾ No performance assessed

Injection System VMH for concrete	
Performance Characteristic values for threaded rods under seismic action	Annex C7

Table C9: Characteristic values of tension loads for internally threaded anchor rod, static and quasi-static action, working life 50 years

Internally thre	aded anchor rod				VMU-IG	VMU-IG	VMU-IG	VMU-IG	VMU-IG	VMU-IO	
					М6	M8	M10	M12	M16	M20	
Steel failure 1)											
Characteristic r		5.8	$N_{Rk,s}$	[kN]	10	17	29	42	76	123	
· · · · · · · · · · · · · · · · · · ·	d, property class	8.8	$N_{Rk,s}$	[kN]	16	27	46	67	121	196	
Partial factor			γMs.N	[-]		1,5					
Characteristic r steel A4 / HCR.	esistance, stainles property class	s 70	$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor			γMs,N	[-]			1,87			2,86	
Combined pul	l-out and concrete	failure									
Characteristic	bond resistance	in <u>uncra</u>	cked co	ncrete C	20/25						
	l: 40°0	C / 24°C			17	16	15	14	13	13	
Temperature	II: 80°0	C / 50°C		[N]/www.27	17	16	15	14	13	13	
range	III: 120°0	C / 72°C	τ _{Rk,ucr}	[N/mm²]	14	14	13	12	12	11	
	VI: 160°C	/ 100°C			11	11	10	9,5	9,0	9,0	
Characteristic	bond resistance	in <u>cracke</u>	ed conc	rete C20	25						
	I: 40°0	C / 24°C			7,5	8,0	9,0	8,5	7,0	7,0	
Temperature	II: 80°0	C / 50°C		INI/ OI	7,5	8,0	9,0	8,5	7,0	7,0	
range	III: 120°0	C / 72°C	τ _{Rk,cr}	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0	
VI: 160°C / 100°C		/ 100°C			5,5	6,0	6,5	6,0	5,5	5,5	
Reduction factor ψ ⁰ sus in concrete C20/25											
	•	C / 24°C					9,0	90			
Temperature		C / 50°C	0	.,			3,0	37			
range		C / 72°C	ψ^0 sus	Ψ^0_{sus} [-] 0,75							
	VI: 160°C	/ 100°C			0,66						
				C25/30			1,0)2			
				C30/37			1,0)4			
				C35/45			1,0)7			
Increasing factor	ors for concrete		Ψο	C40/50			1,0	08			
				C45/55			1,0	9			
				C50/60			1,	10			
Concrete cone	failure										
Relevant parar	meter						see Ta	ble C3			
Splitting failur											
Relevant parar							see Ta	ble C3			
Installation fac											
	vacuum	cleaning					1,	2			
dry or wet manual cleaning			γinst	[-]		1,2	,		rmance as	ssessed	
concrete compressed air cleaning				',		- ,—	1,				
waterfilled drill	John Producti and	J.Jaimig		[-]			<u>',</u> 1,				

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

2) for VMÚ-IG M20: property class 50

Injection System VMH for concrete

Performance

Characteristic values of tension loads for internally threaded anchor rod, working life 50 years

Table C10: Characteristic values of tension loads for internally threaded anchor rod, static and quasi-static action, working life 100 years

Internally threaded anchor rod			VMU-IG	VMU-IG	VMU-IG	VMU-IG	VMU-IG	VMU-IG	
			М6	M8	M10	M12	M16	M20	
Steel failure 1)									
Characteristic resistance, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
steel, zinc plated, property class 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor	γMs,N	[-]			1,	5			
Characteristic resistance, stainless steel A4 / HCR, 70 property class	N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor	γMs,N	[-]			1,87			2,86	
Combined pull-out and concrete fail	ure								
Characteristic bond resistance in un	cracked co	ncrete C	20/25						
Temperature I: 40°C / 24°C		FN 1 / 27	17	16	15	14	13	13	
range II: 80°C / 50°C	τRk,ucr,100	[N/mm²]	17	16	15	14	13	13	
Characteristic bond resistance in cra	acked cond	rete C20	/25						
Temperature _ I: 40°C / 24°C		[NI/mm2]	6,0	6,5	6,5	6,5	6,5	6,5	
range II: 80°C / 50°C	TRk,cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5	
		C25/30			1,0)2			
		C30/37	1,04						
Unavasaina faatara far oonarata		C35/45	1,07						
Increasing factors for concrete	Ψс	C40/50		1,08					
		C45/55	1,09						
		C50/60		1,10					
Concrete cone failure									
Relevant parameter					see Ta	ble C3			
Splitting failure									
Relevant parameter					see Ta	ble C3			
Installation factor									
vacuum cleaning					1,	2			
dry or wet manual cleaning	γinst	[-]		1,2		No perfo	rmance as	ssessed	
concrete compressed air cleaning		-			1,	0			
waterfilled drill compressed air hole cleaning	ompressed air								

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

²⁾ for VMU-IG M20: property class 50

Injection System	VMH for	concrete
------------------	---------	----------

Performance

Characteristic values of tension loads for internally threaded anchor rod, working life 100 years

Table C11: Characteristic values of shear loads for internally threaded anchor rod, static and quasi-static action

Intern	Internally threaded anchor rod					VMU-IG M8	VMU-IG M10	VMU-IG M12	VMU-IG M16	VMU-IG M20
Steel	failure <u>without</u> l	lever arm 1)								
, ted	Characteristic resistance	property class 5.8	$V^0_{Rk,s}$	[kN]	6	10	17	25	45	74
Steel, zinc plated	Characteristic resistance	property class 8.8	V^0 Rk,s	[kN]	8	8 14		34	60	98
İZ	Partial factor		γMs,V	[-]			1,	25		
Stainless steel	Characteristic resistance A4 / HCR	property class 70	V^0 Rk,s	[kN]	7	13	20	30	55	62 ²⁾
St	Partial factor		γMs,V	[-]			1,56			2,38
Ductil	ity factor		k ₇	[-]			1	,0		
Steel	failure <u>with</u> leve	er arm ¹⁾								
, ted	Characteristic bending resistance	property class 5.8	M^0 Rk,s	[Nm]	8	19	37	66	167	325
Steel, zinc plated	Characteristic bending resistance	property class 8.8	M^0 Rk,s	[Nm]	12	30	60	105	267	519
	Partial factor		γMs,V	[-]						
Stainless steel	Characteristic bending resistance A4 / HCR	property class 70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾
[S	Partial factor		γMs,V	[-]			1,56			2,38
Conc	rete pry-out fail	ure								
Pry-o	ut factor		k ₈	[-]			2	,0		
Conc	rete edge failure)								
Effective length of anchor If [mm]						mi	n (h _{ef} ;12 d _n	om)		min (h _{ef} ; 300mm)
Outside diameter of anchor d _{nom} [mm]				[mm]	10	12	16	20	24	30
Installation factor γ _{inst} [-]							1	,0		

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod (exception: VMU-IG M20). The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Fastening screws or threaded rods (incl. nut and washer): property class 70

Injection System VMH for concrete	
Performance Characteristic values of shear loads for internally threaded anchor rod	Annex C10

 $^{^{2)}}$ for VMU-IG M20: Internally threaded rod: property class 50;

Table C12: Characteristic values of tension loads for rebar, static and quasi-static action, 50 years working life

oo yeara werking ine														
Reinforcing	bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure														
Characteristi	c resista	ınce	$N_{Rk,s}$	[kN]					As •	f _{uk} 1)				
Cross section	nal area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	Partial factor γ _Μ					1,4 ²⁾								
		and concrete fail												
Characterist		l resistance in <u>un</u>	cracke	d concret	te C20	0/25								
	<u>l:</u>	40°C / 24°C			14	14	14	14	13	13	13	13	13	13
Temperature		80°C / 50°C	τRk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	13
range	<u>III:</u>	120°C / 72°C	vnk,uci	[[. •/]	13	12	12	12	12	11	11	11	11	11
	VI:	160°C / 100°C			9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Characteristic bond resistance in <u>cracked</u> concrete C20/25														
	<u>l:</u>	40°C / 24°C			5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature		80°C / 50°C	TRk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
range		120°C / 72°C	,•		4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
	VI:	160°C / 100°C			4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Reduction factor ψ ⁰ _{sus} in concrete C20/25														
	<u>l:</u>	40°C / 24°C	ψ^0 sus						0,					
Temperature _		80°C / 50°C		ıs [-]					0,					
range		120°C / 72°C			0,75									
	VI:	160°C / 100°C			0,66									
				C25/30						02				
				C30/37						04				
Increasing fa	ctor for	concrete	Ψс	C35/45					-	07				
J			1	C40/50						80				
				C45/55						09				
-				C50/60					1,	10				
Concrete co		re		Ι	Ι					1.1.0				
Relevant pa								S	ee ra	ble C	5			
Splitting fail									- T	bla O	2			
Relevant pa								8	ee ra	ble C	3			
Installation 1	iacior	vacuum oloopina			ı				4	2				
dry or wet	vacuum cleaning manual cleaning	.,	[[]	1,2 No performance assesse						hase				
concrete	compre	essed air cleaning	γinst	st [-]			۷,۲		- 1		Perion	папсе	asses	seu .
waterfilled drill hole	•	essed air cleaning	γinst	[-]						,0 ,4				
		the enecifications of	٠, .											

¹⁾ fuk shall be taken from the specifications of reinforcing bars 2) in absence of national regulation

Injection System VMH for concrete

Performance

Characteristic values of tension loads for rebar, 50 years working life

Table C13: Characteristic values of tension loads for rebar, static and quasi-static action, 100 years working life

Reinforcing	bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure	•													
Characterist	ic resistaı	nce	N _{Rk,s}	[kN]					As •	f _{uk} 1)				
Cross sectional area As			As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial facto	γMs,N	[-]		1,4 ²⁾										
Combined	oull-out a	ınd concrete fai	lure											
Characteris	tic bond	resistance in <u>u</u>	ncracke	<u>d</u> concret	te C20)/25								
Temperature	e <u>I:</u>	40°C / 24°C	TD: 100	[N/mm²]	14	14	14	14	13	13	13	13	13	13
range	II:	80°C / 50°C	₹Rk,ucr,100	[18/111111-]	14	14	14	14	13	13	13	13	13	13
Characteris	tic bond	resistance in <u>cr</u>	<u>acked</u> c	oncrete (C20/2	5								
Temperature	e <u>I:</u>	40°C / 24°C	TD: 100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
range	II:	80°C / 50°C	TRk,cr,100	[18/111111-]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
									1,	02				
		C30/37					1,	04						
Increeding for	actor for a	oporata		C35/45	1,07									
Increasing fa	actor for c	concrete	Ψс	C40/50	1,08									
				C45/55					1,	09				
				C50/60		1,10								
Concrete co	one failur	œ .												
Relevant pa	arameter							S	see Ta	ıble C	3			
Splitting fai	lure													
Relevant pa	arameter							S	see Ta	ıble C	3			
Installation	factor													
vacuum cleaning									1	,2				
dry or wet concrete		manual cleaning	γinst	[-]	1,2 No performance assessed									
CONTO	compre	ssed air cleaning	1		1,0									
waterfilled drill hole compressed air cleaning γinst [-] 1,4														

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System VMH for concrete

Performance

Characteristic values of tension loads for rebar, 100 years working life

Table C14: Characteristic values of shear loads for rebar, static and quasi-static action

Reinforcing bar	Reinforcing bar					Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever a	rm											
Characteristic shear resistance	$V^0_{Rk,s}$	[kN]	0,50 • A _s • f _{uk} 1)									
Cross sectional area	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,V	[-]					1,	5 ²⁾				
Ductility factor	k ₇	[-]					1	,0				
Steel failure with lever arm												
Characteristic bending resistance	M^0 Rk,s	[Nm]	1,2 • W _{el} • f _{uk} 1)									
Elastic section modulus	W_{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γMs,V	[-]					1,5	5 ²⁾				
Concrete pry-out failure												
Pry-out Factor	k ₈	[-]					2	,0				
Concrete edge failure												
Effective length of rebar	If	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ; 300mm)									
Outside diameter of rebar	d _{no}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]	1,0									

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection	System	VMH for	concrete
mjechon	Oy Stelli	V IVII I IOI	COLICICIE

Table C15: Characteristic values of tension loads for rebar, seismic action (performance category C1), 50 and 100 years working life

						1									
Reinforcing ba	ar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 2 4	Ø 25	Ø 28	Ø 32	
Steel failure															
Characteristic r	Characteristic resistance N _{Rk,s,C1}					A _s • f _{uk} 1)									
Cross sectional	Cross sectional area A _s				50	79	113	154	201	314	452	491	616	804	
Partial factor	[-]					1,	4 ²⁾								
Combined pul															
Characteristic	bone	d resistance in co	ncrete C	20/25 to	C50/6	0									
	l:	40°C / 24°C			5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0	
Temperature	II:	80°C / 50°C		[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0	
range	III:	120°C / 72°C	TRk,C1	[14/11111-]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0	
	VI:	160°C / 100°C			4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0	
Installation fac	ctor														
dry or wet concrete cleaning compressed air γ		γinst	[-]					1	,2						
		compressed air	γinst	[-]					1	,0					
		γinst	[-]					1	,4						

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Table C16: Characteristic values of shear loads for rebar, seismic action (performance category C1)

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32			
Steel failure without lever	arm														
Characteristic resistance	acteristic resistance V ⁰ Rk,s,C1 [kN]					0,35 • A _s • f _{uk} ¹⁾									
Cross sectional area	As	[mm²]	50	79	113	154	201	314	452	491	616	804			
Partial factor	γMs,V	[-]	1,5 ²⁾												
Ductility factor	k ₇	k ₇ [-] 1,0													

¹⁾ fuk shall be taken from the specifications of reinforcing bars 2) in absence of national regulation

Injection System VMH for concrete	
Performance Characteristic values for rebar under seismic action	Annex C14

²⁾ in absence of national regulation

Table C17: Displacements under tension load (threaded rod)

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30				
	Displacement factor 1) uncracked concrete, static and quasi-static action, working life 50 and 100 years													
Temperature range I: 40°C / 24°C	δ _{N0} -factor		0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046				
II: 80°C / 50°C	$\delta_{\text{N}\infty}\text{-factor}$		0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060				
Temperature range	δ_{N0} -factor	mm1	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048				
III: 120°C / 72°C	δ _{N∞} -factor	N/mm ²	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062				
Temperature range	δ _{N0} -factor		0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179				
VI: 160°C / 100°C	δ _{N∞} -factor		0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184				
•	Displacement factor 1) cracked concrete, static and quasi-static action, working life 50 and 100 years													
Temperature range	δ _{N0} -factor		0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106				
I: 40°C / 24°C II: 80°C / 50°C	δ _{N∞} -factor		0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137				
Temperature range	δ_{N0} -factor	r mm	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110				
III: 120°C / 72°C	δ _{N∞} -factor	$\left[\frac{N/mm^2}{N}\right]$	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143				
Temperature range	δ _{N0} -factor		0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412				
VI: 160°C / 100°C δ _{N∞} -fa			0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424				
Displacement, seisr	mic action (C2)												
All temperature	δn,c2 (DLS)	[mm]	_2)		0,24	0,27	0,29	0,27		2)				
ranges	δ N,C2 (ULS)	[mm]			0,55	0,51	0,50	0,58		-,				

¹⁾ Calculation of the displacement

Table C18: Displacements under shear load (threaded rod)

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Displacement factoriacked and uncra		action									
All temperature	δ _{V0} -factor	[mm//lcN1)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Displacement, se	Displacement, seismic action (C2)										
All temperature	δv,c2(DLS)	[mm]		2)	3,6	3,0	3,1	3,5		2)	
ranges	δv,c2(ULS)	[mm]	_2)		7,0	6,6	7,0	9,3		-/	

¹⁾ Calculation of the displacement

V: acting shear load

Injection System VMH for concrete

Performance

Displacements (threaded rod)

 $[\]delta_{\text{N0}} = \delta_{\text{N0}}\text{- factor } \cdot \tau;$

τ: acting bond stress for tension

 $[\]delta_{N\infty} = \delta_{N\infty}\text{- factor }\cdot\tau;$

²⁾ No performance assessed

 $[\]delta_{V0} = \delta_{V0}$ -factor · V;

 $[\]delta_{V\infty} = \delta_{V\infty}$ -factor · V;

²⁾ No performance assessed

Table C19: Displacements under tension load (internally threaded anchor rod)

Internally threaded a	nchor rod		VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20					
•	Displacement factor ¹⁾ uncracked concrete, static and quasi-static action, working life 50 and 100 years												
Temperature range I: 40°C / 24°C	δ _{N0} -factor		0,032	0,034	0,037	0,039	0,042	0,046					
II: 80°C / 50°C	δ _{N∞} -factor		0,042	0,044	0,047	0,051	0,054	0,060					
Temperature range	δ _{N0} -factor	[\frac{mm}{N/mm^2}]	0,034	0,035	0,038	0,041	0,044	0,048					
III: 120°C / 72°C	δ _{N∞} -factor		0,044	0,045	0,049	0,053	0,056	0,062					
Temperature range	δ _{N0} -factor		0,126	0,131	0,142	0,153	0,163	0,179					
VI: 160°C / 100°C	δ _{N∞} -factor		0,129	0,135	0,146	0,157	0,168	0,184					
Displacement factor cracked concrete, state		static action, v	working life	50 and 10	0 years								
Temperature range	δ _{N0} -factor		0,083	0,085	0,090	0,095	0,099	0,106					
I: 40°C / 24°C II: 80°C / 50°C	δ _{N∞} -factor		0,107	0,110	0,116	0,122	0,128	0,137					
Temperature range	δ _{N0} -factor	r mm	0,086	0,088	0,093	0,098	0,103	0,110					
III: 120°C / 72°C	δ _{N∞} -factor	$\left[\frac{N}{mm^2}\right]$	0,111	0,114	0,121	0,127	0,133	0,143					
Temperature range	δ _{N0} -factor		0,321	0,330	0,349	0,367	0,385	0,412					
VI: 160°C / 100°Č	δ _{N∞} -factor		0,330	0,340	0,358	0,377	0,396	0,424					

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\tau\text{:}$ acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C20: Displacements under shear load (internally threaded anchor rod)

Internally threaded a	VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20				
Displacement factor ¹⁾ cracked and uncracked concrete, static and quasi-static action										
All temperature	[mm//IcNI\]	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	δ _{V∞} -factor	[mm/(kN)]	0,10	0,09	0,08 0,08		0,06	0,06		

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V$; V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Injection System VMH for concrete

Performance

Displacements (internally threaded anchor rod)

Table C21: Displacements under tension load (rebar)

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
-	Displacement factor ¹⁾ uncracked concrete, static and quasi-static action, working life 50 and 100 years													
Temperature range I: 40°C / 24°C	δ_{N0} -factor	-	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048		
II: 80°C / 50°C	δ _{N∞} -factor		0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063		
Temperature range	δ _{N0} -factor	mm1	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050		
III: 120°C / 72°C	δ _{N∞} -factor	N/mm ²	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065		
Temperature range	$\delta_{\text{N0}}\text{-factor}$	(0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186		
VI: 160°C / 100°C	δ _{N∞} -factor		0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192		
Displacement facto cracked concrete, sta		si-static actio	on, worl	king life	50 an	d 100 y	ears							
Temperature range I: 40°C / 24°C	δ _{N0} -factor		0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108		
II: 80°C / 50°C	δ _{N∞} -factor		0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141		
Temperature range	δ _{N0} -factor	mm1	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113		
III: 120°C / 72°C	δ _{N∞} -factor	N/mm ²	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148		
Temperature range VI: 160°C / 100°C	δ _{N0} -factor		0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425		
	δ _{N∞} -factor		0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449		

¹⁾ Calculation of the displacement

 $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$;

 $\delta_{N0} = \delta_{N0}$ -factor · τ; τ: acting bond stress for tension $\delta_{N\alpha} = \delta_{N\alpha}$ factor · τ:

Table C22: Displacements under shear load (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Displacement factor ¹⁾ cracked and uncracked concrete, static and quasi-static action												
All temperature	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03		
ranges	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Injection System VMH for concrete

Performance

Displacements (rebar)