

... eine starke Verbindung

PROHLÁŠENÍ O VLASTNOSTECH

DoP č. MKT-340 - cz

¢	Jedinečný identifikační kód typu výrobku:	Vstřikovací systém VMH pro beton
¢	Zamýšlené/zamýšlená použití:	Vstřikovací systém pro ukotvení v betonu, viz příloha/Annex B
¢	Výrobce:	MKT Metall-Kunststoff-Technik GmbH & Co.KG Auf dem Immel 2 67685 Weilerbach
∻	Systém/systémy POSV:	1
¢	Evropský dokument pro posuzování:	ETAG 001-5, 2013-04
	Evropské technické posouzení:	ETA-17/0716, 08.12.2017
	Subjekt pro technické posuzování:	DIBt, Berlin
	Oznámený subjekt/oznámené subjekty:	NB 1343 – MPA, Darmstadt

♦ Deklarovaná vlastnost / Deklarované vlastnosti:

Základní charakteristiky	Vlastnosti
Mechanická odolnost a stabilita (BWR1)	
Charakteristické hodnoty pro statické a kvazistatické akce a seismické výkonnostní kategorie C1 + C2	Příloha /Annex C1 – C7
Posuny	Příloha /Annex C8 – C10
Požární bezpečnost (BWR2)	
Chování při požáru	Třída A1
Požární odolnost	NPD (No Performance Determined) žádná vlastnost není stanovena

Vlastnosti výše uvedeného výrobku jsou ve shodě se souborem deklarovaných vlastností. Toto prohlášení o vlastnostech se v souladu s nařízením (EU) č. 305/2011 vydává na výhradní odpovědnost výrobce uvedeného výše.

Podepsáno za výrobce a jeho jménem:

Stefan Weustenhagen (Výkonný ředitel) Weilerbach, 08.12.2017

p.p. Brightled

Dipl.-Ing. Detlef Bigalke (Vedoucí vývoje produktu)

Originál tohoto prohlášení byl napsán v němčině. V případě odchylek v překladu platí německá verze.

	Threaded rod	Internally threaded anchor rod						
Injection System VMH	VMU-A, V-A, VM-A, commercial standard threaded rod	VMU-IG	Rebar					
Static or quasi-static action	M8 - M30 zinc plated, A4, HCR	IG-M6 - IG-M20 electroplated, A4, HCR	Ø8 - Ø32					
Seismic action, category C1	M8 - M30 zinc plated ¹⁾ , A4, HCR	-	Ø8 - Ø32					
Seismic action, category C2	M12 zinc plated ¹⁾ (strength class 8.8) A4, HCR	-	-					
	Reinforced or unreinforced n	ormal weight concrete a	acc. to EN 206-1:2000					
Base materials	Strength classes acc. to EN 206-1:2000:C20/25 to C50/60							
	Cracked	d and uncracked concre	te					
Temperature Range I -40 °C to +80 °C	max long term temperature	+50 °C and max short ter	m temperature +80 °C					
Temperature Range II -40 °C to +120 °C	max long term temperature +72 °C and max short term temperature +120 °C							
Temperature Range III -40 °C to +160 °C	max long term temperature +100 °C and max short term temperature +160 °C							

1) except hot-dip galvanised

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed

Installation:

- Dry or wet concrete
- · Hole drilling by hammer or compressed air drill or vacuum drill mode
- · Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class
 of the internally threaded anchor rod

Injection System VMH for concrete

Intended Use

Specifications

	- pa.a									
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Diameter of threaded rod	d _{nom} =	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ =	[mm]	10	12	14	18	22	28	30	35
Effective encharge depth	h _{ef,min} =	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth -		[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾		[mm]	9	12	14	18	22	26	30	33
Installation torque	T _{inst} ≤	[Nm]	10	20	40 (35) ²⁾	60	100	170	250	300
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀					
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance		[mm]	35	40	45	50	60	65	75	80

Table B1: Installation parameters for threaded rods

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum $d_{nom} + 1$ mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar ²⁾ Installation torque for M12 with steel grade 4.6

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor ro	d		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	$d_2 =$	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ²⁾	$d_{nom} =$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	22	28	35
Effective anchorage depth	h _{ef,min} =	[mm]	60	70	80	90	96	120
Effective anchorage depth	h _{ef,max} =	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	I _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of h _{min} [mm]			30 mm 0 mm	h _{ef} + 2d ₀				
Minimum spacing	S _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ For larger clearance hole see TR029 section 1.1

²⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter of rebar	$d = d_{nom} =$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ =	[mm]	12	14	16	18	20	25	32	35	40
Effective anchorage depth	h _{ef,min} =	[mm]	60	60	70	75	80	90	100	112	128
	h _{ef,max} =	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀						
Minimum spacing	S _{min}	[mm]	40	50	60	70	75	95	120	130	150
Minimum edge distance	C _{min}	[mm]	35	40	45	50	50	60	70	75	85
Injection System VMH f	or concret	e									

Intended use

Installation parameters

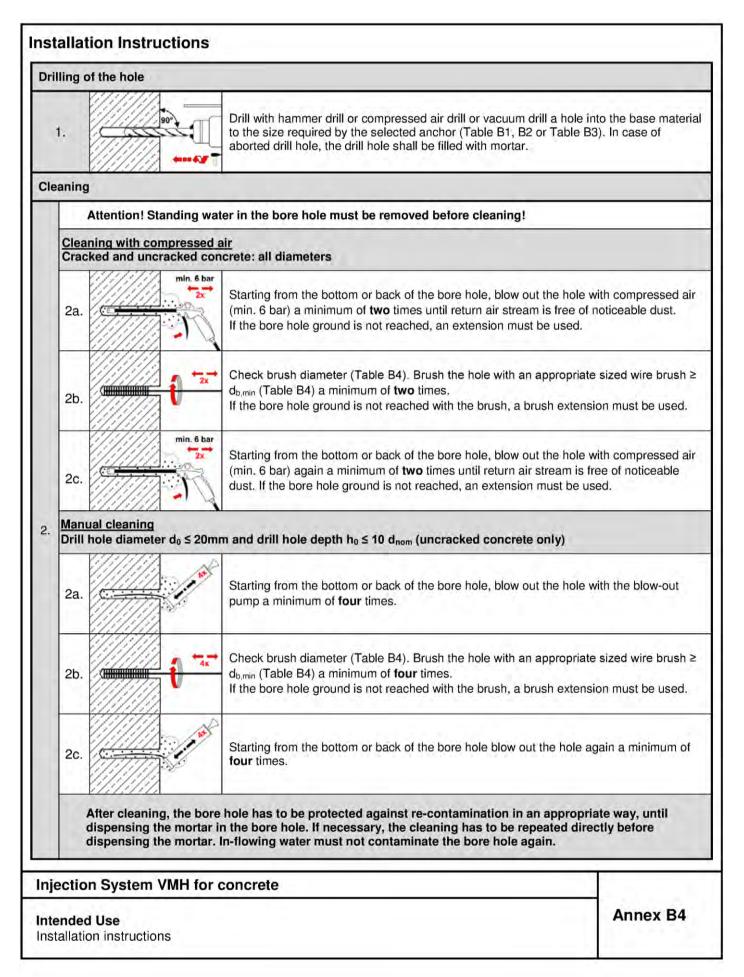
Annex B2

Threaded rod	Rebar	Internally threaded anchor rod	Drill bit Ø	Brush Ø	min. Brush Ø		Retaining washer						
			WWWW			Installation direction and use of retaining washer							
[-]	Ø [mm]		d₀ [mm]	d₅ [mm]	d _{b,min} [mm]	[-]	ŧ	•	1				
M8		has a second	10	11,5	10,5	-							
M10	8	VMU-IG M 6	12	13,5	12,5	1.79.41	No retaining washer required						
M12	10	VMU-IG M 8	14	15,5	14,5	- 19° - 1	No retair	ling washer	required				
	12		16	17,5	16,5								
M16	14	VMU-IG M10	18	20,0	18,5	VM-IA 18							
1.0.1	16	1 1	20	22,0	20,5	VM-IA 20							
M20		VMU-IG M12	22	24,0	22,5	VM-IA 22							
1.1.1	20		25	27,0	25,5	VM-IA 25	6.2	1.2.1					
M24		VMU-IG M16	28	30,0	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all				
M27		10.00	30	31,8	30,5	VM-IA 30	2001111	2001111					
	25	12	32	34,0	32,5	VM-IA 32							
M30	28	VMU-IG M20	35	37,0	35,5	VM-IA 35							
12	32	1	40	43,5	40,5	VM-IA 40							

Blow-out pump (volume 750ml) Drill bit diameter (d_0) : 10 mm to 20 mm Drill hole depth (h_0) : \leq 10 d_{nom} for uncracked concrete

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Retaining washer for overhead or horizontal installation Drill bit diameter (d₀): 18 mm to 40 mm


REPRESENT æ db

Steel brush Drill bit diameter (d₀): all diameters

Injection System VMH for concrete

Intended Use Cleaning and setting tools Annex B3

mat	ection	
3.	ALE S	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correc dispensing tool. For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.
4.	her .	Prior to inserting the rod into the filled bore hole, the position of the embedment depth shall be marked on the threaded rod or rebar
5.	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.
ia.		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. For embedment larger than 190 mm, an extension nozzle shall be used. Observe working times given in Table B5.
sb.		 Retaining washer and mixer nozzle extensions shall be used according to Table B4 for the following applications: Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm Overhead installation: Drill bit-Ø d₀ ≥ 18 mm
nje	ection System VMH f	or concrete

Inser	rting the anchor	
7.		Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.
8.		Make sure that the anchor is fully seated up to the full embedment depth and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation, the anchor should be fixed (e.g. by wedges).
9.	X	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).
10.		Remove excess mortar.
11.	Tinst	The fixture can be mounted after curing time. Apply installation torque T _{inst} according to Table B1 or B2 by using a calibrated torque wrench.
12.		Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Tabelle B1: Working time and curing time

Company to the second second	Maximum	Minimum cu	iring time					
Concrete temperature	working time	dry concrete	wet concrete					
-5°C to -1°C	50 min	5 h	10 h					
0°C to +4°C	25 min	3,5 h	7 h					
+5°C to +9°C	15 min	2 h	4 h					
+10°C to +14°C	10 min	1 h	2 h					
+15°C to +19°C	6 min	40 min	80 min					
+20°C to +29°C	3 min	30 min	60 min					
+30°C to +40°C	2 min	30 min	60 min					
Cartridge temperature	+ 5°C to + 40°C							

Injection System VMH for concrete

Intended Use

Installation instructions (continuation) Working and curing time Annex B6

Thread	ed rod			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30		
Steel fa	ilure												
Tensio	n load												
e	Steel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224		
stic tanc	Steel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280		
steri esis	Steel, Property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449		
Characteristic tension resistance	Stainless steel A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281		
) ten	Stainless steel A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-		
	Steel, Property class 4.6	γMs,N	[-]] 2,0									
	Steel, Property class 4.8	γMs,N	[-]] 1,5									
tor	Steel, Property class 5.6	γMs,N	[-]	2,0									
I fac	Steel, Property class 5.8	γMs,N	[-]				1	,5					
Partial factor	Steel, Property class 8.8	γMs,N	[-]				1	,5					
Ц,	Stainless steel A4 and HCR, Property class 50	γMs,N	[-]	2,86									
	Stainless steel A4 and HCR, Property class 70	γMs,N	[-]			1,3	87			-	-		
Shear I	oad												
Steel fa	illure <u>without</u> lever arm												
۵.	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112		
stic ance	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140		
sist	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224		
Characteristic shear resistance	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140		
	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-		
Steel fa	illure <u>with</u> lever arm												
, t	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900		
istic	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123		
cter J mo	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797		
Characteristic bending moment	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	112		
) å	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-		
	Steel, Property class 4.6	γMs,V	[-]				1,	67					
	Steel, Property class 4.8	γMs,V	[-]				1,:	25					
tor	Steel, Property class 5.6	γMs,V	[-]				1,	67					
Partial factor	Steel, Property class 5.8	γMs,V	[-]				1,:	25					
rtial	Steel, Property class 8.8	γMs,V	[-]				1,:	25					
Ра	Stainless steel A4 and HCR, Property class 50	γMs,V	[-]				2,	38					
	Stainless steel A4 and HCR, Property class 70	γms,v	[-]			1,	56			-	-		

. .

Performance

Characteristic values for threaded rods under tension and shear loads

	-										
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure			FL N II				T				
		N _{Rk,s}	[kN]	see Table C1 1,0 • N _{Bk.s}							
Characteristic tension res		N _{Rk,s,C1}	[kN]			1,0 •					
		$N_{Rk,s,C2}$	[kN]	N	PD	N _{Rk,s}	No Pe	erforman	ice Dete	rmined	(NPD)
Partial factor		γMs,N	[-]				see Ta	able C1			
Combined pull-out and o											
Characteristic bond resi	stance in uncracked	concret	e C20/25								
Temperature range I: 80°C / 50°C		$\tau_{Rk,ucr}$	[N/mm²]	17	17	16	15	14	13	13	13
Temperature range II: 120°C / 72°C		$\tau_{Rk,ucr}$	[N/mm²]	15	14	14	13	12	12	11	11
Temperature range III: 160°C / 100°C			[N/mm²]	12	12	11	10	9,5	9,0	9,0	9,0
Characteristic bond resi	stance in cracked co	ncrete (220/25								
Temperature range I:	τ _{Rk,cr}	$= \tau_{Rk,C1}$	[N/mm²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5
30°C / 50°C		τ _{Rk,C2}	[N/mm²]	N	PD	3,6	No Pe	erforman	ice Dete	rmined	(NPD
Femperature range II:	τ _{Rk,cr}	-	[N/mm ²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,5
120°C / 72°C		$\tau_{\text{Rk},\text{C2}}$	[N/mm²]	N	PD	3,1	No Pe	erforman	ice Dete	rmined	(NPD
Temperature range III:	$\tau_{\text{Rk,cr}}$	$= \tau_{Rk,C1}$	[N/mm²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,5
60°C / 100°C		τ _{Rk,C2}	[N/mm²]	N	PD	2,5	No Pe	erforman	ice Dete	rmined	(NPD
			C25/30	1,02							
			C30/37	1,04							
ncreasing factors for con	crete	Ψc	C35/45 C40/50	1,07							
			C40/50 C45/55	1,08							
			C45/55	<u>1,09</u> 1,10							
	uncracked concrete		030/00),1			
Factor according to CEN/TS1992-4-5	cracked concrete	k ₈	[-]					,2			
Concrete cone failure	cracked concrete						/	,2			
Factor according to	uncracked concrete	k _{ucr}	[-]				10),1			
CEN/TS1992-4-5	cracked concrete	k _{cr}	[-]					,2			
Splitting failure		NCF					,	,			
spinning fundro	h/h _{ef} ≥ 2,0						1.0) h _{ef}			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2		5 – h / h	et)		
	h/h _{ef} ≤ 1,3	Oci,sp	[[]					h _{ef}	617		
Spacing		S _{cr,sp}	[mm]					cr,sp			
Installation factor		eci,sp				(o) ¹)		,ap			
Compressed air cleanin	g	$\gamma_2 = \gamma_{inst}$	[-]		1,0 (1,2) ¹⁾			1,	,2	
Installation factor Manual cleaning		$\gamma_2 = \gamma_{inst}$	[-]		1	,2					

Injection System VMH for concrete

Performance

Characteristic values of tension loads for threaded rods

under static, o	quasi-sta	itic ac											
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30			
Steel failure without lever arm													
	$V_{Rk,s}$	[kN]				see Ta	able C1						
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]				0,70	• V _{Rk,s}						
	$V_{Rk,s,C2}$	[kN]	NF	PD	0,80 • V _{Rk,s}	No	Performa	nce Dete	Determined (NPD)				
Partial factor	γ _{Ms,V}	Is,v [-] see Table C1											
Steel failure <u>with</u> lever arm													
	$M^0{}_{Rk,s}$	[Nm]				see Ta	able C1						
Characteristic bending moment													
	M ⁰ _{Rk,s,C2} [Nm] No Performance Determined (NP												
Partial factor	γ _{Ms,V}	[-]											
Concrete pry-out failure	-												
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]											
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0						
Concrete edge failure													
Effective length of anchor	I _f	[mm]				l _f = min(h	ı _{ef} ; 8 d _{nom})						
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0						
Injection System VMH for	r concret	e											
Performance Characteristic values of shea	r loads for	threa	ded rod	S					Annex	C3			

Internally threaded ancho	r rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure 1)									
Characteristic tension resist Steel, strength class 5.8	ance,	$N_{Rk,s}$	[kN]	10	18	29	42	79	123
Partial factor		γMs.N	[-]			1	,5		
Characteristic tension resist Steel, strength class 8.8	ance,	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor		γMs,N	[-]			1,	,5		
Characteristic tension resist Stainless steel A4 / HCR, st		$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ³⁾
Partial factor		γMs,N	[-]			1,87			2,86
Combined pull-out and co	ncrete failure								
Characteristic bond resist	ance in <u>uncracked</u> o	concret	te C20/25						
Temperature range I: 80°C / 50°C		$\tau_{Rk,ucr}$	[N/mm²]	17	16	15	14	13	13
Temperature range II: 120°C / 72°C		$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	14	14	13	12	12	11
Temperature range III: 160°C / 100°C		$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	12	11	10	9,5	9,0	9,0
Characteristic bond resist	ance in <u>cracked</u> con	crete (C20/25						
Temperature range I: 80°C / 50°C		$\tau_{\text{Rk},\text{cr}}$	[N/mm²]	7,0	7,5	8,5	8,5	8,5	8,5
Temperature range II: 120°C / 72°C		$\tau_{\text{Rk},\text{cr}}$	[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5
Temperature range III: 160°C / 100°C		$\tau_{\text{Rk},\text{cr}}$	[N/mm ²]	5,5	6,0	6,5	6,5	6,5	6,5
			C25/30				02		
			C30/37 C35/45				04		
Increasing factors for concre	ete	Ψc	C35/45 C40/50			,	07 08		
			C40/50 C45/55				09		
			C50/60						
Footon coccuelian to	uncracked concrete		C50/60 1,10 10,1						
Factor according to CEN/TS1992-4-5	cracked concrete	k_8	[-]				,2		
	cracked concrete					7	,2		
Concrete cone failure		1.	6.1						
Factor according to CEN/TS1992-4-5	uncracked concrete	k _{ucr}	[-]			10			
	cracked concrete	k _{cr}	[-]			7	,2		
Splitting failure									
	h/h _{ef} ≥ 2,0						h _{ef}		
Edge distance	2,0> h/h _{ef} > 1,3	$\mathbf{C}_{cr,sp}$	[mm]			2 * h _{ef} (2,			
	h/h _{ef} ≤ 1,3					2,4	h _{ef}		
Spacing		$\mathbf{S}_{cr,sp}$	[mm]			2 c	cr,sp		
Installation factor Compressed air cleaning	γ2	$_2 = \gamma_{inst}$	[-]		1,0 (1,2) ²⁾			1,2	
Installation factor Manual cleaning	γ2 rods (incl. nut and wash	$_2 = \gamma_{inst}$	[-]		1,2			-	

Injection System VMH for concrete

Performance

Characteristic values of tension loads for internally threaded anchor rod

nternally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20			
Steel failure without lever arm ¹⁾											
Characteristic shear resistance Steel, strength class 5.8	V _{Rk,s}	[kN]	5	9	15	21	39	61			
Partial factor	γms.v	[-]			1,	25					
Characteristic shear resistance Steel, strength class 8.8	V _{Rk,s}	[kN]	8	14	23	34	60	98			
Partial factor	γ _{Ms.V}	[-]			1,	25		t.			
Characteristic shear resistance Stainless steel A4 / HCR, strength class 70	ss steel A4 / HCR, V _{Rk.s} [kN] 7 13 20 30										
Partial factor	γ _{Ms,V}	[-]			1,56			2,38			
Steel failure with lever arm ¹⁾							0				
Characteristic bending moment, Steel, strength class 5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325			
Partial factor	YMs.V	[-]			1,	25					
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519			
Partial factor	(more a second s										
Characteristic bending moment, Stainless steel A4 / HCR, strength class 70	M ⁰ _{Rk,s}	[Nm]	άţ	26	53	92	234	643 ²⁾			
Partial factor	γms,v	[-]			1,56			2,38			
Concrete pry-out failure		_									
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]			2	,0					
Concrete edge failure											
Effective length of anchor	łį	[mm]			k = min(h	_{et} ; 8 d _{nom})					
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30			
nstallation factor	$\gamma_2 = \gamma_{inst}$	[-]	1		1	,0	1994 - N.				
Fastening screws or threaded rods (ind threaded anchor rod. The characteristic rod and the fastening element For VMU-IG M20: Internally threaded r	shear resista	ance for st	eel failure of	the given stre	ength class are	valid for the	internally thre	aded ancho			
	oncrete						1				

Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension r	esistance N _{Rk,s} =	N _{Rk,s,C1}	[kN]					$A_{s} \cdot f_{uk}^{1}$)			
Cross section area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]					1,4 ²⁾				
Combined pull-out an	d concrete failure											
Characteristic bond r	esistance in <u>uncrack</u> e	<u>ed</u> concr	ete C20/25	5								
Temperature range I: 80°C / 50°C		$\tau_{Rk,ucr}$	[N/mm ²]	14	14	14	14	13	13	13	13	13
Temperature range II: 120°C / 72°C		$\tau_{Rk,ucr}$	[N/mm²]	13	12	12	12	12	11	11	11	11
Temperature range III: 160°C / 100°C		$\tau_{Rk,ucr}$	[N/mm ²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0
Characteristic bond r	esistance in <u>cracked</u>	concrete										
Temperature range I: 80°C / 50°C Temperature range II:	τ _{Rk,c}	$\tau = \tau_{Rk,C1}$	[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
120°C / 72°C Temperature range III:	τ _{Rk,c}	$r = \tau_{Rk,C1}$	[N/mm²] [N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0
160°C / 100°C					4,0 4,5 4,5 5,0 5,5 6,0 6,0 5,5 6,5 1,02							
			C25/30 C30/37	1,02								
		Ψc	C35/45	1,04								
Increasing factor for co	ncrete		C35/45 C40/50	1,07								
			C45/55	1,09								
			C50/60	1,10								
Factor according to	uncracked concrete	k.	r_1	10,1								
CEN/TS1992-4-5	cracked concrete	k ₈	[-]	7,2								
Concrete cone failure				4^ 								
Factor according to	uncracked concrete	k _{ucr}	[-]	10,1								
CEN/TS1992-4-5	cracked concrete	k _{cr}	[-]					7,2				
Splitting failure								1.0.1				
Edge distance	$h/h_{ef} \ge 2,0$		[]				0 * -	1,0 h _{ef}	b / b `			
Edge distance	2,0> h/h _{ef} > 1,3 h/h _{ef} ≤ 1,3	C _{cr,sp}	[mm]				2 n _{ef}	(2,5 – 2,4 h _{ef}	Π / Π _{ef})			
Spacing	1/11et = 1,3	S _{cr,sp}	[mm]					2,4 Tief 2 C _{cr,sp}				
Installation factor		Gcr,sp				.	3)	- Ocr,sp		-		
Compressed air clear	ning	$\gamma_2 = \gamma_{inst}$	[-]		1	,0 (1,2)	0)			1,	2	
nstallation factor $\gamma_2 = \gamma_{ins}$			[-]			1,2						
¹ f _{uk} shall be taken from the ¹ in absence of nation regu ¹ Value in brackets for crac	Ilation	ing bars										

Performance

Characteristic values of tension loads for rebar

Characteristic shear resistanceVRk.s.C1[kN]VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Characteristic shear resistance VRk.s.C1 [KN] Image: state st	L	1	-	1	L
VRk.s.C1[KN] (KN) Cross section areaAs (mm^2) 5079113154Partial factor $\gamma_{Ms,V}$ [-] $(-)$ $(-)$ $(-)$ $(-)$ Ductility factor according to CEN/TS 1992-4-5 k_2 $(-)$ $(-)$ $(-)$ $(-)$ Steel failure with lever armCharacteristic bending moment $M^0_{Rk,s.C1}$ (Nm) $(No \ Performance Per$	50 • A _s •	f _{uk} ¹⁾			
Partial factor $\gamma_{Ms,V}$ [-]Ductility factor according to CEN/TS 1992-4-5 k_2 [-]Steel failure with lever armM ⁰ _{RK,S} [Nm]Characteristic bending moment $M^0_{RK,SC1}$ [Nm] $M^0_{RK,SC1}$ [Nm]No PerformaElastic section modulus W_{el} $[mm^3]$ 5098170269Partial factor $\gamma_{Ms,V}$ [-]	37 • A _s •	$f_{uk}^{(1)}$			
Ductility factor according to CEN/TS 1992-4-5 k2 [-] Steel failure with lever arm Characteristic bending moment $M^0_{Rk,s}$ [Nm] Characteristic bending moment $M^0_{Rk,s,C1}$ [Nm] No Performation Elastic section modulus W_{el} [mm] 50 98 170 269 Partial factor $\gamma_{Ms,V}$ [-] Factor k acc. to TR 029 $\gamma_{Ms,V}$ [-] Factor k acc. to TR 029 $k_{(3)}$ [-] Installation factor $\gamma_2 = \gamma_{Inst}$ [-] Outside diameter of rebar l_t [mm] 8 10 12 14 Installation factor $\gamma_2 = \gamma_{Inst}$ [-] Installation factor $\gamma_2 = \gamma_{Inst}$ [-]	201	314	491	616	804
K2[1]Steel failure with lever armM° _{Rk,s} [Nm]1,Characteristic bending momentM° _{Rk,s} [Nm]1,Characteristic bending momentM° _{Rk,s} [Nm]1,M° _{Rk,s} [Nm]No PerformaElastic section modulusW _{el} [mm³]5098170269Partial factor $\gamma_{Ms,v}$ [-]Concrete pry-out failureFactor k acc. to TR 029 Factor k ₃ acc. to CEN/TS 1992-4-5K(3)[-]Installation factor $\gamma_2 = \gamma_{inst}$ [-]Outside diameter of rebarIt[mm]8101214Installation factor $\gamma_2 = \gamma_{inst}$ [-]It fundIt fund </td <td>1,5²⁾</td> <td></td> <td></td> <td>-</td> <td></td>	1,5 ²⁾			-	
Steel failure with lever armCharacteristic bending moment $M^0_{Rk,s}$ $[Nm]$ 1, $M^0_{Rk,s,C1}$ $[Nm]$ No PerformationElastic section modulus W_{el} $[mm^3]$ 5098170269Partial factor $\gamma_{Ms,V}$ $[-]$ V V Concrete pry-out failureFactor k acc. to TR 029 Factor k_3 acc. to CEN/TS 1992-4-5 $k_{(3)}$ $[-]$ V Installation factor $\gamma_2 = \gamma_{Inst}$ $[-]$ Concrete edge failure $V_2 = \gamma_{Inst}$ $[-]$ V Concrete installation factor $\gamma_2 = \gamma_{Inst}$ $[-]$ V Installation factor $\gamma_2 = \gamma_{Inst}$ $[-]$ V Installation factor $\gamma_2 = \gamma_{Inst}$ $[-]$ V $V_{V_{ab}}$ shall be taken from the specifications of reinforcing bars V V	0,8				
Characteristic bending momentImage of the section of the specifications of reinforcing barsCharacteristic bending moment $M^0_{Rk,s,C1}$ $[Nm]$ No PerformationElastic section modulus W_{el} $[mm^3]$ 5098170269Partial factor $\gamma_{Ms,V}$ $[-]$ Concrete pry-out failureFactor k acc. to TR 029 Factor k_3 acc. to CEN/TS 1992-4-5 $k_{(3)}$ $[-]$ Installation factor $\gamma_2 = \gamma_{inst}$ $[-]$ Concrete edge failureEffective length of rebar I_t $[mm]$ $I_t = 1$ Outside diameter of rebar d_{nom} $[mm]$ 8101214Installation factor $\gamma_2 = \gamma_{inst}$ $[-]$ $[-]$ $[-]$					
$M^0_{Rk,s,C1}$ $[Nm]$ No PerformanceElastic section modulus W_{el} $[mm^3]$ 5098170269Partial factor $\gamma_{Ms,V}$ $[-]$ $[-]$ $[-]$ $[-]$ Concrete pry-out failureFactor k acc. to TR 029 Factor k_3 acc. to CEN/TS 1992-4-5 $k_{(3)}$ $[-]$ $[-]$ Installation factor $\gamma_2 = \gamma_{inst}$ $[-]$ $[-]$ Concrete edge failureEffective length of rebar I_f $[mm]$ 8 101214Installation factor $\gamma_2 = \gamma_{inst}$ $[-]$ $[-]$ $[-]$	2 ∙ W _{el} ∙ f	: 1) uk			
Partial factor $\gamma_{MS,V}$ [-] Concrete pry-out failure [-] Factor k acc. to TR 029 k(3) [-] Factor k_3 acc. to k(3) [-] CEN/TS 1992-4-5 [-] [-] Installation factor $\gamma_2 = \gamma_{inst}$ [-] Concrete edge failure [-] Effective length of rebar It [mm] It = 1 Outside diameter of rebar d_{nom} [mm] 8 10 12 14 Installation factor $\gamma_2 = \gamma_{inst}$ [-] [-]	ince Dete	ermined	(NPD)		
Concrete pry-out failure Factor k acc. to TR 029 k(3) [-] Factor k_3 acc. to k(3) [-] Installation factor $\gamma_2 = \gamma_{inst}$ [-] Installation factor $\gamma_2 = \gamma_{inst}$ [-] Concrete edge failure Image: state	402	785	1534	2155	3217
Factor k acc. to TR 029 k(3) [-] Factor k_3 acc. to CEN/TS 1992-4-5 [-] Installation factor $\gamma_2 = \gamma_{inst}$ [-] Concrete edge failure Effective length of rebar If [mm] Outside diameter of rebar d _{nom} [mm] 8 10 12 14 Installation factor $\gamma_2 = \gamma_{inst}$ [-] [-] 14	1,5 ²⁾	1		-1	
Factor k ₃ acc. to CEN/TS 1992-4-5 k ₍₃₎ [-] Installation factor $\gamma_2 = \gamma_{inst}$ [-] Concrete edge failure [-] Effective length of rebar If [mm] Outside diameter of rebar d _{nom} [mm] 8 Installation factor $\gamma_2 = \gamma_{inst}$ [-] $\gamma_{12} = \gamma_{inst}$ [-]					
Concrete edge failure Effective length of rebar If Outside diameter of rebar dnom $\gamma_2 = \gamma_{inst}$ [-] Installation factor $\gamma_2 = \gamma_{inst}$ γ_1 [-]	2,0				
Effective length of rebarIf[mm]IfOutside diameter of rebar d_{nom} [mm]8101214Installation factor $\gamma_2 = \gamma_{inst}$ [-]	1,0				
Outside diameter of rebar d_{nom} [mm] 8 10 12 14 Installation factor $\gamma_2 = \gamma_{inst}$ [-]					
Installation factor $\gamma_2 = \gamma_{inst}$ [-]	min(h _{ef} ; 8	d _{nom})			
¹⁾ f _{uk} shall be taken from the specifications of reinforcing bars	16	20	25	28	32
¹⁾ f _{uk} shall be taken from the specifications of reinforcing bars	1,0				
' in absence of nation regulation					
Injection System VMH for concrete					

Threaded rod			M8	M10	M12	M16	M20	M24	M27	М30
Uncracked concrete C	20/25 under	static and qua	si-static a	action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C / 100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete C20/	/25 under st	atic and quasi-	static act	ion		-			-	
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
30°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,13
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,14
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,41
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,42
Cracked concrete C20/	:2)			•						
All $\delta_{N,seis}$	[mm/(N/mm ²)]	(NF	חפ	0,120	No	Performa	nce Deter	mined (N	PD)	
	_{s (ULS)} -factor	[mm/(N/mm²)]	(141	0)	0,140		renorma			(2)
¹⁾ Calculation of the dis	splacement									
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-} \text{ factor } \cdot \tau; \\ \delta_{N\infty} &= \delta_{N\infty}\text{-} \text{ factor } \cdot \tau; \end{split}$		$\begin{split} \delta_{\text{N,seis}(\text{DLS})} &= \delta_{\text{N,s}} \\ \delta_{\text{N,seis}(\text{ULS})} &= \delta_{\text{N,s}} \end{split}$	eis(ULS)-fac	tor · τ;		ng bond s od)	tress for t	ension		
$\delta_{N\infty} = \delta_{N\infty} \text{- factor } \cdot \tau;$ Table C9: Displ		$\delta_{\text{N,seis}(\text{ULS})} = \delta_{\text{N,s}}$	eis(ULS)-fac	tor · τ;		0	tress for to M 20	ension M24	M 27	M 30
$\delta_{N_{\infty}} = \delta_{N_{\infty}}$ - factor $\cdot \tau$; Table C9: Displ	lacement	$\delta_{N,seis(ULS)} = \delta_{N,s}$ s under she	eis(ULS)-fac ear loac M 8	tor · τ; 1 ¹⁾ (thre M 10	aded ro M 12	od) M 16			M 27	M 30
$\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$; Table C9: Displ Threaded rod Jncracked and cracke	lacement	$\delta_{N,seis(ULS)} = \delta_{N,s}$ s under she	eis(ULS)-fac ear loac M 8	tor · τ; 1 ¹⁾ (thre M 10	aded ro M 12	od) M 16			M 27 0,03	
$\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$; Table C9: Displ Threaded rod Jncracked and cracke	d concrete	$\delta_{N,seis(ULS)} = \delta_{N,s}$ s under she C20/25 under st	eis(ULS)-fac ear load M 8 tatic and	tor · τ; I ¹⁾ (thre M 10 quasi-sta	aded ro M 12 atic action	od) M 16	M 20	M24		0,03
$\delta_{N\infty} = \delta_{N\infty} \text{- factor } \cdot \tau;$	acement d concrete δ_{V0} -factor $\delta_{V\infty}$ -factor	$\delta_{N,seis(ULS)} = \delta_{N,s}$ s under she C20/25 under st [mm/(kN)] [mm/(kN)]	eis(ULS)-fac ear load M 8 tatic and 0,06 0,09	tor · τ; 1¹⁾ (thre M 10 quasi-sta 0,06	aded ro M 12 atic action 0,05	Dd) M 16 n 0,04	M 20 0,04	M24 0,03	0,03	M 30 0,03 0,05
$\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$; Table C9: Displ Threaded rod Jncracked and cracker All temperature ranges Cracked concrete C20 / All $\delta_{V,seit}$	acement d concrete δ_{V0} -factor $\delta_{V\infty}$ -factor	$\delta_{N,seis(ULS)} = \delta_{N,s}$ s under she C20/25 under st [mm/(kN)] [mm/(kN)]	eis(ULS)-fac ar load M 8 attic and 0,06 0,09 2)	tor · τ; 1¹⁾ (thre M 10 quasi-sta 0,06 0,08	aded ro M 12 atic action 0,05	Dd) M 16 n 0,04 0,06	M 20 0,04 0,06	M24 0,03 0,05	0,03 0,05	0,03 0,05
$\delta_{N\infty} = \delta_{N\infty} \text{- factor} \cdot \tau;$ Table C9: Displ Threaded rod Jncracked and cracked All temperature ranges Cracked concrete C20 All emperature Cracked concrete C20	d concrete δ _{v0} -factor δ _{v∞} -factor	$\delta_{N,seis(ULS)} = \delta_{N,s}$ s under she C20/25 under st [mm/(kN)] [mm/(kN)] eismic action (C	eis(ULS)-fac ear load M 8 tatic and 0,06 0,09	tor · τ; 1¹⁾ (thre M 10 quasi-sta 0,06 0,08	aded ro M 12 atic action 0,05 0,08	Dd) M 16 n 0,04 0,06	M 20 0,04 0,06	M24 0,03 0,05	0,03	0,03 0,05
$\delta_{N\infty} = \delta_{N\infty} \text{- factor} \cdot \tau;$ Table C9: Displ Threaded rod Uncracked and cracked All temperature ranges Cracked concrete C20 All emperature Cracked concrete C20	d concrete δ_{V0} -factor $\delta_{V\infty}$ -factor /25 under se s(DLS) -factor s(ULS) -factor s(ULS) -factor s(ULS) -factor	$\delta_{N,seis(ULS)} = \delta_{N,s}$ s under she C20/25 under st [mm/(kN)] [mm/(kN)] sismic action (C [mm/(kN)]	eis(ULS)-fac ar load M 8 attic and 0,06 0,09 2) (NF cDLS)- facto	tor · τ; 1 ¹⁾ (thre M 10 quasi-sta 0,06 0,08 PD) r · V;	eaded ro M 12 atic action 0,05 0,08 0,27 0,27	Dd) M 16 n 0,04 0,06	M 20 0,04 0,06 Performa	M24 0,03 0,05	0,03 0,05	0,03 0,05

Internally threaded and	hor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked concrete C2	0/25 under s	tatic and quasi	-static actio	on				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C / 100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete C20/2	25 under stat	ic and quasi-st	atic action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,107	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \ \cdot \tau;$

Table C11: Displacements under shear load¹⁾ (internally threaded anchor rod)

Internally threaded anche	or rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Uncracked and cracked of	concrete C20	/25 under sta	tic and qua	si-static act	ion						
	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04			
All temperature ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06			
¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; V: acting shear load $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;											
Injection System VM	IH for cond	crete									
Performance Displacements (internal	Anne	Annex C9									

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C2	0/25 under :	static and quas	i-static a	action							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048
80°C / 50°C	$\delta_{N_\infty}\text{-}factor$	[mm/(N/mm ²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,063
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,050
120°C / 72°C	$\delta_{N\infty}\text{-}factor$	[mm/(N/mm ²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,065
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,186
											0,192
Cracked concrete C20/2	25 under sta	tic and quasi-s	tatic act	ion							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,108
80°C / 50°C	$\delta_{N_\infty}\text{-}factor$	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,141
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,113
120°C / 72°C	δ_{N_∞} -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,148
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,425
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,449

Table C13: Displacements under shear load¹⁾ (rebar)

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Cracked and uncracked	concrete C20	/25 under sta	tic and o	quasi-st	atic act	ion						
	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
All temperature ranges -	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	
¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor · V; V: acting shear load $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;												
Injection System VI	MH for con	crete										
Injection System VMH for concrete Performance Displacements (rebar)										Annex C10		