

LEISTUNGSERKLÄRUNG

DoP Nr.: MKT-340 - de

♦ Eindeutiger Kenncode des Produkttyps: Injektionssystem VMH für Beton

Verwendungszweck(e): Injektionssystem zur Verankerung im Beton,

siehe Anhang B

♦ Hersteller: MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

♦ System(e) zur Bewertung und

Überprüfung der Leistungsbeständigkeit:

♦ Europäisches Bewertungsdokument: ETAG 001-5, 2013-04

Europäische Technische Bewertung: ETA-17/0716, 08.12.2017

Technische Bewertungsstelle: DIBt, Berlin

Notifizierte Stelle(n): NB 1343 – MPA, Darmstadt

Wesentliche Merkmale	Leistung
Mechanische Festigkeit und Standsicherheit (BWR1)	
Charakteristische Werte für statische und quasi-statische Einwirkungen und seismische Leistungskategorien C1+C2	Anhang C1 – C7
Verschiebungen	Anhang C8 – C10
Brandschutz (BWR2)	
Brandverhalten	Klasse A1
Feuerwiderstand	NPD (No Performance Determined) Keine Leistung bestimmt

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung / den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Stefan Weustenhage (Geschäftsführer)

Weilerbach, 08.12.2017

Dipl.-Ing. Detlef Bigalke
(Leiter der Produktentwicklung)

Spezifizierung des Verwendungszwecks

	Ankerstangen	Innengewinde- ankerstangen				
Injektionssystem VMH	VMU-A, V-A, VM-A, handelsübliche Gewindestangen	VMU-IG	Betonstahl			
Statische oder quasi-statische Lasten	M8 - M30 verzinkt, A4, HCR	IG-M6 – IG-M20 galvanisch verzinkt, A4, HCR	Ø8 - Ø32			
Seismische Einwirkung Kategorie C1	M8 - M30 verzinkt ¹⁾ , A4, HCR	-	Ø8 - Ø32			
Seismische Einwirkung Kategorie C2	M12 verzinkt ¹⁾ (Fkl. 8.8), A4, HCR	-	-			
	Bewehrter oder unbewehrter Normalbeton, gem. EN 206-1:2000					
Verankerungsgrund	Festigkeitsklasse C2	20/25 bis C50/60, gem. EN 2	206-1:2000			
	Gerissener und ungerissener Beton					
Temperaturbereich I -40 °C bis +80 °C	max. Langzeit-Temperatur	+50 °C und max. Kurzzeitten	nperatur +80 °C			
Temperaturbereich II -40 °C bis +120 °C	max. Langzeit-Temperatur	+72 °C und max. Kurzzeit-Te	mperatur +120 °C			
Temperaturbereich III -40 °C bis +160 °C	max. Langzeit-Temperatur +	100 °C und max. Kurzzeit-Te	mperatur +160 °C			

¹⁾ Ausgenommen feuerverzinkte Ankerstangen

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Die Bemessung der Verankerungen unter statischen und quasi-statischen Lasten erfolgt nach:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Fassung September 2010 oder
 - CEN/TS 1992-4:2009
- Die Bemessung der Verankerungen unter seismischer Einwirkung erfolgt nach:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Fassung Februar 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B. plastischer Gelenke) der Betonkonstruktion anzuordnen
 - Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht erlaubt

Einbau:

- · Trockener oder feuchter Beton
- Bohrlochherstellung durch Hammer- oder Pressluftbohren (Saugbohren erlaubt)
- Überkopfmontage erlaubt
- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Schrauben und Gewindestange (inkl. Mutter und Unterlegscheibe) müssen dem Material und der Festigkeitsklasse der Innengewindeankerstange entsprechen.

Injektionssystem VMH für Beton	
Verwendungszweck Spezifikationen	Anhang B1

Tabelle B1: Montage- und Dübelkennwerte, Ankerstange

Ankerstange			М8	M10	M12	M16	M20	M24	M27	M30
Durchmesser Ankerstange	$d_{nom} =$	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmesser	$d_0 =$	[mm]	10	12	14	18	22	28	30	35
Effektive	$h_{ef,min} =$	[mm]	60	60	70	80	90	96	108	120
Verankerungstiefe	$h_{ef,max} =$	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im anzuschließenden Bauteil ¹⁾	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Montagedrehmoment	T _{inst} ≤	[Nm]	10	20	40 (35) ²⁾	60	100	170	250	300
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d ₀			
minimaler Achsabstand	S _{min}	[mm]	40	50	60	75	95	115	125	140
minimaler Randabstand	C _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ Bei größeren Durchgangslöchern TR029, Abschnitt 1.1 beachten; für Anwendungen unter seismischer Einwirkung: Durchgangsloch im Anbauteil maximal d_{nom}+1 mm; alternativ ist der Ringspalt zwischen Gewindestange und Anbauteil kraftschlüssig mit Mörtel zu verfüllen.

Tabelle B2: Montage- und Dübelkennwerte, Innengewindeankerstange

Innengewindeankerstange			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Innendurchmesser	$d_2 =$	[mm]	6	8	10	12	16	20
Außendurchmesser 2)	$d_{nom} =$	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d ₀ =	[mm]	12	14	18	22	28	35
Effektive Verenkerungstiefe	h _{ef,min} =	[mm]	60	70	80	90	96	120
Effektive Verankerungstiefe	h _{ef,max} =	[mm]	200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Montagedrehmoment	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Min. Einschraubtiefe	I _{IG}	[mm]	8	8	10	12	16	20
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	- 2d ₀	
minimaler Achsabstand	S _{min}	[mm]	50	60	75	95	115	140
minimaler Randabstand	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ Bei größeren Durchgangslöchern TR029, Abschnitt 1.1 beachten; ²⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Tabelle B3: Montagekennwerte Betonstahl

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Durchmesser Betonstahl	$d = d_{nom} =$	[mm]	8	10	12	14	16	20	25	28	32
Bohrernenndurchmesser	d ₀ =	[mm]	12	14	16	18	20	25	32	35	40
Effektive	$h_{ef,min} =$	[mm]	60	60	70	75	80	90	100	112	128
Verankerungstiefe	$h_{ef,max} =$	[mm]	160	200	240	280	320	400	500	560	640
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d ₀)		
minimaler Achsabstand	S _{min}	[mm]	40	50	60	70	75	95	120	130	150
minimaler Randabstand	C _{min}	[mm]	35	40	45	50	50	60	70	75	85

Injektionssystem VMH für Beton	
Verwendungszweck Montagekennwerte	Anhang B2

²⁾ Maximales Drehmoment für M12 mit Festigkeitsklasse 4.6

Tabelle B4: Parameter für Reinigungs- und Setzzubehör

Anker- stange	Beton- stahl	Innen- gewinde- hülse	Bohrer Ø	Bürsten Ø	min. Bürsten Ø	Injektionsadapter					
- S	************							itung und Vo njektionsada			
[-]	Ø [mm]	[-]	d ₀ [mm]	d ₅ [mm]	d _{b,min} [mm] [-]		•	→	1		
M8			10	11,5	10,5	-					
M10	8	VMU-IG M 6	12	13,5	12,5	-	Kein Injektionsadapter erforderlich				
M12	10	VMU-IG M 8	14	15,5	14,5	1					
	12		16	17,5	16,5	1	enordenich				
M16	14	VMU-IG M10	18	20,0	18,5	VM-IA 18					
	16		20	22,0	20,5	VM-IA 20					
M20		VMU-IG M12	22	24,0	22,5	VM-IA 22					
	20		25	27,0	25,5	VM-IA 25					
M24		VMU-IG M16	28	30,0	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	alle		
M27			30	31,8	30,5	VM-IA 30	23011111	23011111			
	25		32	34,0	32,5	VM-IA 32					
M30	28	VMU-IG M20	35	37,0	35,5	VM-IA 35					
	32		40	43,5	40,5	VM-IA 40					

Ausblaspumpe (Volumen 750ml)

Bohrerdurchmesser (d_0): 10 mm bis 20 mm Bohrlochtiefe (h_0): \leq 10 d_{nom} für ungerissenen Beton

Empfohlene Druckluftpistole (min 6 bar)

Bohrerdurchmesser (d₀): alle Durchmesser

Injektionsadapter für Überkopfoder Horizontalmontage

Bohrerdurchmesser (d₀): 18 mm bis 40 mm

Stahlbürste

Bohrerdurchmesser (d₀): alle Durchmesser

Injektionssystem VMH für Beton

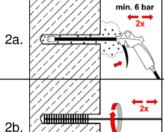
Verwendungszweck

Reinigungs- und Installationszubehör

Anhang B3

Montageanweisung

Bohrlocherstellung

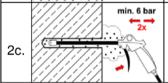

Bohrloch drehschlagend (mit Hammer,- Druckluft,- oder Saugbohrer) mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder Tabelle B3) und gewählter Bohrlochtiefe erstellen. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Reinigung

Achtung! Vor dem Reinigen des Bohrloches stehendes Wasser entfernen!

Reinigung mit Druckluft

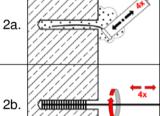
Gerissener und ungerissener Beton: alle Durchmesser



Das Bohrloch vom Bohrlochgrund her mind. **2x** vollständig mit Druckluft (min. 6 bar) ausblasen bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

De Be

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser $d_{b,\text{min}}$ ist einzuhalten) mind. 2x ausbürsten.


Bei tiefen Bohrlöchern Bürstenverlängerung benutzen.

Das Bohrloch vom Bohrlochgrund her erneut mind. **2x** vollständig mit Druckluft (min. 6 bar) ausblasen bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

Manuelle Reinigung

Bohrlochdurchmesser d₀ ≤ 20mm und Bohrlochtiefe h₀ ≤ 10 d_{nom} (nur im ungerissenen Beton)

Das Bohrloch vom Bohrlochgrund her mit der Ausblaspumpe mind. **4x** vollständig ausblasen.

2b.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser $d_{b,\text{min}}$ ist einzuhalten) mind. 4x ausbürsten.

Bei tiefen Bohrlöchern Bürstenverlängerung benutzen.

2c. Da

Das Bohrloch vom Bohrlochgrund her erneut mit der Ausblaspumpe mind. **4x** vollständig ausblasen.

Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in geeigneter Weise zu schützen. Gegebenenfalls ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrlochs führen.

Injektionssystem VMH für Beton

Verwendungszweck

Montageanweisung

Anhang B4

Montageanweisung (Fortsetzung)

Injek	tion	
3.	WITE S	Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B5) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.
4.	her	Vor dem Injizieren des Mörtels die geforderte Verankerungstiefe auf der Ankerstange markieren.
5.	min.3x	Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.
6a.		Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Bei Verankerungstiefen größer 190mm passende Mischverlängerung verwenden. Die Verarbeitungszeiten gemäß Tabelle B5 sind zu beachten.
6b.		Injektionsadapter mit Mischerverlängerungen (Tabelle 4) sind für folgende Verankerungen zu verwenden: • Installationen horizontal oder vertikal nach unten mit Bohrloch-Ø d₀ ≥ 18 mm und Verankerungstiefen hef > 250 mm • Überkopfmontage: Bohrloch-Ø d₀ ≥ 18 mm

Injektionssystem VMH für Beton

Verwendungszweck

Montageanweisung (Fortsetzung)

Anhang B5

Montageanweisung (Fortsetzung) Setzen der Ankerstange Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Verankerungstiefe einsetzen. 7. Die Ankerstange muss schmutz-, fett- und ölfrei sein. Nach der Installation muss der Ringspalt komplett mit Mörtel verfüllt sein. Wird kein Mörtel an der Betonoberfläche sichtbar, ist die Ankerstange sofort (vor Beendigung der 8. Verarbeitungszeit) heraus zu ziehen und die Anwendung ab Schritt 6 zu wiederholen. Für Überkopfmontage ist die Ankerstange zu fixieren (z.B. mit Holzkeilen). Die angegebene Aushärtezeit muss eingehalten werden. Befestigungselement während der 9. Aushärtezeit (siehe Tabelle B5) nicht bewegen oder belasten. Ausgetretenen Mörtel entfernen. 10. Nach vollständiger Aushärtung kann das Anbauteil mit dem zulässigen Drehmoment Tinst

Drehmomentschlüssel festgezogen werden.

Ringspalt ist vollständig verfüllt, wenn Mörtel austritt.

nach Tabelle B1 oder B2 montiert werden. Die Mutter muss mit einem kalibrierten

Ringspalt zwischen Ankerstange und Anbauteil kann optional mit Mörtel verfüllt werden. Dafür Unterlegscheibe durch Verfüllscheibe ersetzen und Mischerreduzierung auf den

Tabelle B5: Verarbeitungs- und Aushärtezeiten

Statikmischer stecken.

12.

Boton Townswatur	Maximale	Mindest-Aus	härtezeit
Beton Temperatur	Verarbeitungszeit	trockener Beton	feuchter Beton
-5°C bis -1°C	50 min	5 h	10 h
0°C bis +4°C	25 min	3,5 h	7 h
+5°C bis +9°C	15 min	2 h	4 h
+10°C bis +14°C	10 min	1 h	2 h
+15°C bis +19°C	6 min	40 min	80 min
+20°C bis +29°C	3 min	30 min	60 min
+30°C bis +40°C	2 min	30 min	60 min
Kartuschentemperatur		+ 5°C bis + 40°C	

Injektionssystem VMH für Beton	
Verwendungszweck Montageanweisung (Fortsetzung) Verarbeitungs- und Aushärtezeiten	Anhang B6

Tabelle C1: Charakteristische Stahltragfähigkeit für Ankerstangen unter Zug- und Querbeanspruchung

Ankers	stange			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Stahlve	ersagen										
Zugbea	anspruchung										
it it	Stahl, Festigkeitsklasse 4.6 und 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
isch	Stahl, Festigkeitsklasse 5.6 und 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
erist fähi	Stahl, Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Charakteristische Zugtragfähigkeit	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
유지	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
	Stahl, Festigkeitsklasse 4.6	$\gamma_{\text{Ms,N}}$	[-]				2	,0			
wer	Stahl, Festigkeitsklasse 4.8	$\gamma_{\text{Ms},N}$	[-]				1	,5			
ibei	Stahl, Festigkeitsklasse 5.6	$\gamma_{Ms,N}$	[-]				2	,0			
ieits	Stahl, Festigkeitsklasse 5.8	γMs,N	[-]				1	,5			
Jerh	Stahl, Festigkeitsklasse 8.8	$\gamma_{\text{Ms},N}$	[-]				1	,5			
Teilsicherheitsbeiwert	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	γMs,N	[-]				2,	86			
	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	γMs,N	[-]			1,	87			-	-
Querbe	eanspruchung										
Stahlve	ersagen <u>ohne</u> Hebelarm										
e 芸	Stahl, Festigkeitsklasse 4.6 und 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
ischigke	Stahl, Festigkeitsklasse 5.6 und 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
erist Jfäh	Stahl, Festigkeitsklasse 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Charakteristische Quertragfähigkeit	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	$V_{\text{Rk},\text{s}}$	[kN]	9	15	21	39	61	88	115	140
	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
Stahlve	ersagen <u>mit</u> Hebelarm										
es	Stahl, Festigkeitsklasse 4.6 und 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
kteristisches gemoment	Stahl, Festigkeitsklasse 5.6 und 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
risti	Stahl, Festigkeitsklasse 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
narakteristische Biegemoment	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	$M_{\text{Rk},s}$	[Nm]	19	37	66	167	325	561	832	1125
Charal Bieg	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	$M_{\text{Rk},\text{s}}$	[Nm]	26	52	92	232	454	784	-	-
	Stahl, Festigkeitsklasse 4.6	$\gamma_{\text{Ms,V}}$	[-]				1,	67			
wer	Stahl, Festigkeitsklasse 4.8	γMs,V	[-]				1,	25			
bei	Stahl, Festigkeitsklasse 5.6	γMs,V	[-]				1,	67			
eits	Stahl, Festigkeitsklasse 5.8	γMs,V	[-]				1,	25			
ierh	Stahl, Festigkeitsklasse 8.8	γMs,V	[-]				1,	25			
Teilsicherheitsbeiwert	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	γMs,V	[-]				2,	38			
T	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	γMs,V	[-]			1,	56			-	-

Injektionssystem VMH für Beton

Leistungen

Charakteristische Werte für Ankerstangen unter Zug- und Querbeanspruchung

Anhang C1

Tabelle C2: Charakteristische Werte der **Zugtragfähigkeit** für **Ankerstangen** unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1 + C2

Ankerstangen				M8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen												
		$N_{Rk,s}$	[kN]			5	siehe Ta		1			
Charakteristische Zug	tragfähigkeit	$N_{Rk,s,C1}$	[kN]				1,0 •	$N_{Rk,s}$	V _{Rk,s}			
		$N_{\text{Rk},s,\text{C2}}$	[kN]	NI	PD	1,0 • N _{Rk,s}	kein	ie Leistu	ıng best	immt (N	IPD)	
Teilsicherheitsbeiwert		γMs,N	[-]	siehe Tabelle C1								
	gen durch Herauszieh											
	erbundtragfähigkeit im	ı <u>ungeriss</u>	<u>enen</u> Bet	on C20	/25							
Temperaturbereich I: 80°C / 50°C		τ _{Rk,ucr}	[N/mm ²]	17	17	16	15	14	13	13	13	
Temperaturbereich II: 120°C / 72°C		[N/mm ²]	15	14	14	13	12	12	11	11		
Temperaturbereich III: 160°C / 100°C	:	$ au_{Rk,ucr}$	[N/mm ²]	12	12	11	10	9,5	9,0	9,0	9,0	
Charakteristische Ve	erbundtragfähigkeit im	ı <u>gerissen</u>	en Beton	C20/25	5							
Temperaturbereich I:		$t_{k,cr} = \tau_{Rk,C1}$	[N/mm ²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5	
80°C / 50°C		τ _{Rk,C2}	[N/mm ²]	NI	PD	3,6	kein			g bestimmt (NPD)		
Temperaturbereich II:		$t_{k,cr} = \tau_{Rk,C1}$	[N/mm ²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,5	
120°C / 72°C		τ _{Rk,C2}	[N/mm ²]	NI	PD	3,1	kein	keine Leistung bestimmt			IPD)	
Temperaturbereich III	. τ _Β	$t_{k,cr} = \tau_{Rk,C1}$	[N/mm²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,5	
160°C / 100°C		$\tau_{\text{Rk},\text{C2}}$	[N/mm ²]	NI	PD	2,5	kein	ie Leistu	ıng best	immt (N	IPD)	
			C25/30		1,02							
			C30/37	1,04								
= 1			C35/45	1,07								
Erhöhungsfaktor für B	eton	Ψc	C40/50	1,08								
			C45/55	1,09								
			C50/60					10				
Falster sees	ungerissener Beton		000/00				10					
Faktor gem CEN/TS1992-4-5	gerissener Beton	k ₈	[-]					,2				
Betonausbruch	genssener beton							, 2				
Faktor gem.	ungerissener Beton	k _{ucr}	[-]				10) 1				
CEN/TS1992-4-5	gerissener Beton	k _{cr}	[-]					,, i ,2				
Spalten		-										
$h/h_{ef} \ge 2$,							1,0	h _{ef}				
Randabstand	2,0> h/h _{ef} > 1,3	4	[mm]			2	2*h _{ef} (2,		;)			
_	1	' '	2,4 h _{ef}									
Achsabstand	[mm]					cr,sp						
	Montagesicherheitsbeiwert				1,0 (1,2) ¹⁾ 1,2							
Montagesicherheitsbe Manuelle Reinigung	iwert	$\gamma_2 = \gamma_{inst}$	[-] [-]		1	,2				-		

¹⁾ Wert in Klammer für gerissenen Beton

Injektionssystem VMH für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit für Ankerstangen	Anhang C2

Tabelle C3: Charakteristische Werte der **Quertragfähigkeit** für **Ankerstangen** unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1 + C2

Ankerstangen			М8	M10	M12	M16	M20	M24	M27	M30			
Stahlversagen <u>ohne</u> Hebelarm													
	$V_{Rk,s}$	[kN]				siehe Ta	abelle C1						
Charakteristische Quertragfähigkeit	V _{Rk,s,C1}	[kN]	0,70 • V _{Rk,s}										
	V _{Rk,s,C2}	[kN]	NF	PD	0,80 • V _{Rk,s}	keine Leistung bestimmt (NPD)							
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	siehe Tabelle C1										
Stahlversagen mit Hebelarm													
	M ⁰ _{Rk,s} [Nm] siehe Tabelle C1												
Charakteristisches Biegemoment	$M^0_{Rk,s,C1}$	[Nm]	keine Leistung bestimmt (NPD)										
siegemoment	M ⁰ _{Rk,s,C2}	[Nm]	Reme Leistung bestimmt (NFD)										
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe Ta	abelle C1						
Betonausbruch auf der lastabge	wandten	Seite											
Faktor k gemäß Technical Report TR 029 bzw. Faktor k₃ gemäß CEN/TS 1992-4-5	k ₍₃₎	[-]				2	,0						
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]	1,0										
Betonkantenbruch													
Effektive Ankerlänge	I _f	[mm]] I _f = min(h _{ef} ; 8 d _{nom})										
Außendurchmesser der Ankerstange	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]	1,0										

Injektionssystem VMH für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit für Ankerstangen	Anhang C3

Tabelle C4: Charakteristische Werte der **Zugtragfähigkeit** für **Innengewindeankerstangen** unter statischer, quasi-statischer Belastung

Innengewindeankerstange			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Stahlversagen 1)										
Charakteristische Zugtragfähigkeit,	N _{Rk.s}	[kN]	10	18	29	42	79	123		
Stahl, Festigkeitsklasse 5.8	INRK,S			10			/ 0	120		
Teilsicherheitsbeiwert	γMs,N	[-]			1	,5	1			
Charakteristische Zugtragfähigkeit, Stahl, Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	16	27	46	67	121	196		
Teilsicherheitsbeiwert	γMs,N	[-]			1	,5				
Charakteristische Zugtragfähigkeit, Nichtrostender Stahl A4 / HCR, Fkl. 70	N _{Rk,s}	[kN]	14	26	41	59	110	124 ³⁾		
Teilsicherheitsbeiwert	γMs,N	[-]			1,87			2,86		
Kombiniertes Versagen durch Heraus	ziehen und	Betonaus	bruch							
Charakteristische Verbundtragfähigke	it im ungeri	ssenen B	eton C20/2	25						
Temperaturbereich I: 80°C / 50°C	τ _{Rk,ucr}	[N/mm ²]	17	16	15	14	13	13		
Temperaturbereich II: 120°C / 72°C	τ _{Rk,ucr}	[N/mm²]	14	14	13	12	12	11		
Temperaturbereich III: 160°C / 100°C	τ _{Rk,ucr}	[N/mm²]	12	11	10	9,5	9,0	9,0		
Charakteristische Verbundtragfähigke	it im geriss	enen Beto	n C20/25							
Temperaturbereich I: 80°C / 50°C	τ _{Rk,cr}	[N/mm²]	7,0	7,5	8,5	8,5	8,5	8,5		
Temperaturbereich II: 120°C / 72°C		[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5		
Temperaturbereich III: 160°C / 100°C	τ _{Rk,cr}	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5		
		C25/30	1,02							
		C30/37				04				
Erhöhungsfaktor für Beton	Ψο	C35/45				07				
Zimonangolaktor far Zoton	Ψς	C40/50				08				
		C45/55				09				
		C50/60				10				
Faktor gem. ungerissener Be CEN/TS1992-4-5 gerissener Be		[-]			10),1 ,2				
9	eton				/	,2				
Betonausbruch Faktor gem. ungerissener Be	eton k _{ucr}	[_1			10),1				
Faktor gem. ungerissener Ber GEN/TS1992-4-5 gerissener Ber Generation ge		[-] [-]				,2				
Spalten	eton k _{cr}	[-]			/	,_				
•	2.0				1.0	h _{ef}				
Randabstand $h/h_{ef} \ge 0.0 > h/h_{ef} > 0.0 > 0.0$		[mm]								
Randabstand $2,0 > h/h_{ef} > h/h_{ef} > 1$		[mm]			2*h _{ef} (2,5	· h _{ef}				
Achsabstand		[mm]								
Montagesicherheitsbeiwert Druckluftreinigung	$\gamma_2 = \gamma_{inst}$	[mm] [-]		1,0 (1,2) ²⁾	20	cr,sp	1,2			
Montagesicherheitsbeiwert Manuelle Reinigung	$\gamma_2 = \gamma_{inst}$	[-]		1,2			-			

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Injektionssystem VMH für Beton

Leistungen

Charakteristische Werte der Zugtragfähigkeit für Innengewindeankerstangen

Anhang C4

²⁾ Wert in Klammern für gerissenen Beton

³⁾ Für VMU-IG M20: Ankerstangen mit Innengewinde: Festigkeitsklasse 50; Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter): Festigkeitsklasse 70

Tabelle C5: Charakteristische Werte unter Querbeanspruchung für Innengewindeankerstangen unter statischer und quasi-statischer Belastung

Innengewindeankerstange			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
				101 111 0	16.11.15	16.112	10 111 10	16.11.20		
Stahlversagen ohne Hebelarm ¹⁾					ı		<u> </u>			
Charakteristische Quertragfähigkeit, Stahl vz, Festigkeitsklasse 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	61		
Teilsicherheitsbeiwert	$\gamma_{\text{Ms,V}}$	[-]	1,25							
Charakteristische Quertragfähigkeit, Stahl vz, Festigkeitsklasse 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98		
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]			1,	25				
Charakteristische Quertragfähigkeit, Nichtrostender Stahl A4 / HCR, Festigkeitsklasse 70	$V_{Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾		
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,56							
Stahlversagen mit Hebelarm ¹⁾										
Charakteristisches Biegemoment Stahl vz, Festigkeitsklasse 5.8	$M^0_{Rk,s}$	[Nm]	8	19	37	66	167	325		
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]			1,	25				
Charakteristisches Biegemoment Stahl vz, Festigkeitsklasse 8.8	${\sf M^0}_{\sf Rk,s}$	[Nm]	12	30	60	105	267	519		
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]			1,	25				
Charakteristisches Biegemoment Nichtrostender Stahl A4 / HCR, Festigkeitsklasse 70	$M^0_{Rk,s}$	[Nm]	11	26	53	92	234	643 ²⁾		
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]			1,56			2,38		
Betonausbruch auf der lastabgewa	ndten Se	eite								
Faktor k gemäß TR 029 bzw. Faktor k₃ gemäß CEN/TS 1992-4-5	k ₍₃₎	[-]			2	,0				
Betonkantenbruch										
Effektive Ankerlänge	I _f	[mm]	$I_{f} = min(h_{ef}; 8 d_{nom})$							
Außendurchmesser der Ankerstange	d _{nom}	[mm]	10 12 16 20 24							
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]	1,0							

Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

2) Für VMU-IG M20: Ankerstangen mit Innengewinde: Festigkeitsklasse 50; Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und

Injektionssystem VMH für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit für Innengewindeankerstange	Anhang C5

Mutter): Festigkeitsklasse 70

Tabelle C6: Charakteristische Werte der Zugtragfähigkeit für Betonstahl unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1

Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen												
Charakteristische Zugtrag	gfähigkeit N _{Rk,s} = N	V _{Rk,s,C1}	[kN]	$A_s \cdot f_{uk}^{1)}$								
Stahlspannungsquerschn	itt	As	[mm²]	50 79 113 154 201 314 491 616 804								
Teilsicherheitsbeiwert		γMs,N	[-]					1,4 ²⁾				
Kombiniertes Versagen												
Charakteristische Verbu	undtragfähigkeit im <u>u</u>	ıngeris	<u>senen</u> Bet	on C20	0/25							
Temperaturbereich I: 80°C / 50°C		$\tau_{Rk,ucr}$	[N/mm²]	14	14	14	14	13	13	13	13	13
Temperaturbereich II: 120°C / 72°C		[N/mm²]	13	12	12	12	12	11	11	11	11	
Temperaturbereich III: 160°C / 100°C		[N/mm²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0	
Charakteristische Verbu	undtragfähigkeit im g	erisse	<u>nen</u> Beton	C20/2	5							
Temperaturbereich I: 80°C / 50°C	τ _{Rk,cr} =	= τ _{Rk,C1}	[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
Temperaturbereich II: 120°C / 72°C	τ _{Rk,cr} =	= τ _{Rk,C1}	[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0
Temperaturbereich III: 160°C / 100°C	τ _{Rk,cr} =	τ _{Rk,C1}	[N/mm²]	4,0	4,5	4,5	5,0	5,5	6,0	6,0	5,5	6,5
			C25/30					1,02				
			C30/37	1,04								
Ed. "Is a second to a City Bare		Ψc -	C35/45	1,07								
Erhöhungsfaktor für Beto	n		C40/50	1,08								
			C45/55	1,09								
			C50/60	1,10								
Faktor gem.	ungerissener Beton			10,1								
CEN/TS1992-4-5	gerissener Beton	k ₈	[-]					7,2				
Betonausbruch	90000							- ,				
Faktor gem.	ungerissener Beton	k _{ucr}	[-]					10,1				
CEN/TS1992-4-5	gerissener Beton	k _{cr}	[-]					7,2				
Spalten	generalier beton	rcr						٠,٢				
- parton	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Randabstand	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	[mm]				2*h _{ef}	(2,5 –				
h/h _{ef}		-01,3p	įj					2,4 h _{ef}				
Achsabstand S _{cr,sp}		[mm]					2 c _{cr,sp}					
Montagesicherheitsbeiwe Druckluftreinigung	γ :	$_2 = \gamma_{inst}$	[-]	1,0 (1,2) ³⁾ 1,2								
Montagesicherheitsbeiwe Manuelle Reinigung	rt γ:	$_2 = \gamma_{\text{inst}}$	[-]			1,2						

 ¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen
 ²⁾ Sofern andere nationalen Regelungen fehlen
 ³⁾ Wert in Klammer gültig für gerissenen Beton

Injektionssystem VMH für Beton	
Charakteristische Werte der Zugtragfähigkeit für Betonstahl	Anhang C6

Tabelle C7: Charakteristische Werte der Quertragfähigkeit für Betonstahl unter statischer, quasi-statischer Belastung und Erdbebenbelastung C1

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm									-		
Charakteristische	$V_{Rk,s}$	[kN]				0,5	60 • A _s • 1	: 1) uk			
Quertragfähigkeit	$V_{Rk,s,C1}$	[kN]	0,37 • A _s • f _{uk} ¹⁾								
Stahlspannungsquerschnitt	As	[mm²]	50	79	113	154	201	314	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,5 ²⁾								
Duktilitätsfaktor gemäß CEN/TS 1992-4-5	k ₂	[-]	0,8								
Stahlversagen mit Hebelarm											
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	1,2 • W _{el} • f _{uk} 1)								
	$M^0_{Rk,s,C1}$	[Nm]	keine Leistung bestimmt (NPD)								
Elastisches Widerstandsmoment	Wel	[mm ³]	50	98	170	269	402	785	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,5 ²⁾				
Betonausbruch auf der lastabge	wandten	Seite									
Faktor k gemäß TR 029 bzw. Faktor k₃ gemäß CEN/TS 1992-4-5	k ₍₃₎	[-]					2,0				
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
Betonkantenbruch											
Effektive Ankerlänge	I _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$								
Außendurchmesser des Betonstahls	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Montagesicherheitsbeiwert	$\gamma_2 = \gamma_{inst}$	[-]					1,0				

¹⁾ ist den Spezifikationen des Betonstahls zu entnehmen ²⁾ Sofern andere nationalen Regelungen fehlen

Injektionssystem VMH für Beton

Leistungen

Charakteristische Werte der Quertragfähigkeit für Betonstahl

Anhang C7

Tabelle C8:	Verschiebung unter Zugbeanspruchung ¹⁾ (Ankerstange)

Ankerstange			М8	M10	M12	M16	M20	M24	M27	M30		
Ungerissener Beton C	20/25 unter	statischer und	quasi-sta	tischer E	Belastung	J						
Temperaturbereich I:	$\delta_{\text{N0}}\text{-}$ Faktor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046		
80°C / 50°C	$\delta_{N\infty}\text{-Faktor}$	[mm/(N/mm ²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060		
Temperaturbereich II:	$\delta_{\text{N0}}\text{-}$ Faktor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048		
120°C / 72°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062		
Temperaturbereich III: 160°C / 100°C	δ_{N0} - Faktor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179		
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184		
Gerissener Beton C20	/25 unter sta	tischer und qu	asi-statis	cher Bel	astung							
Temperaturbereich I:	$\delta_{\text{N0}}\text{-}$ Faktor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106		
80°C / 50°C	$\delta_{N\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137		
Temperaturbereich II:	$\delta_{\text{N0}}\text{-}$ Faktor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110		
120°C / 72°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143		
Temperaturbereich III:	δ_{N0} - Faktor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412		
160°C / 100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424		
Gerissener Beton C20	/25 unter se	ismischer Bela	stung (C2	2)								
$\begin{array}{cc} \text{Alle} & & \delta_{\text{N,seis}} \\ \text{Temperatur-} & & \end{array}$	(DLS) -Faktor	[mm/(N/mm²)]	(NPD)		0,120	Keine Leistung heatinent (NDD)						
bereiche $\delta_{N,seis}$	(ULS) -Faktor	[mm/(N/mm²)]	(141	<i>D</i>)	0,140	Keine Leistung bestimmt (NPD)						

¹⁾ Berechnung der Verschiebung

$$\begin{split} \delta_{N0} &= \delta_{N0}\text{-Faktor } \cdot \tau; & \delta_{N,\text{seis}(DLS)} &= \delta_{N,\text{seis}(DLS)}\text{-Faktor } \cdot \tau; \\ \delta_{N\infty} &= \delta_{N\infty}\text{-Faktor } \cdot \tau; & \delta_{N,\text{seis}(ULS)} &= \delta_{N,\text{seis}(ULS)}\text{-Faktor } \cdot \tau; \\ \end{split}$$
 τ : einwirkende Verbundspannung unter Zugbeanspruchung

Tabelle C9: Verschiebung unter Querbeanspruchung¹⁾ (Ankerstange)

Ankerstange			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Ungerissener und gerissener Beton C20/25 unter statischer und quasi-statischer Einwirkung										
Alle Temperaturbereiche	δ _{v0} - Faktor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V\infty}$ -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Gerissener Beton C20/25 unter seismischer Belastung (C2)										
Alle δ _{V,seis(DLS)} -Fak		[mm/(kN)]	(NIDD)		0,27	Kaisa Laiatusa haatissaat (NDD)			,	
Temperatur- bereiche $\delta_{V,se}$	eis(ULS) -Faktor	[mm/(kN)]	(NPD)		0,27	Keine Leistung bestimmt (NPD)				

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0} - Faktor \ \cdot \ V; \qquad \delta_{V,seis(DLS)} = \delta_{V,seis(DLS)} - Faktor \ \cdot \ V; \qquad V: einwirkende \ Querkraft$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor} \cdot V; \qquad \delta_{V,seis(ULS)} = \delta_{V,seis(ULS)}\text{-Faktor} \cdot V;$

Injektionssystem VMH für Beton

Leistungen

Verschiebung (Ankerstange)

Anhang C8

Tabelle C10: Verschiebung unter Zugbeanspruchung 1) (Innengewindeankerstange)

1									
Ankerstange mit Innengev		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung									
Temperaturbereich I: 80°C / 50°C	$\delta_{\text{N0}}\text{-}$ Faktor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046	
	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060	
Temperaturbereich II: 120°C / 72°C	$\delta_{\text{N0}}\text{-}$ Faktor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048	
	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062	
Temperaturbereich III:	δ_{N0} - Faktor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179	
160°C / 100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184	
Gerissener Beton C20/25	unter statisch	er und quasi-s	tatischer B	elastung					
Temperaturbereich I:	$\delta_{\text{N0}}\text{-}$ Faktor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106	
80°C / 50°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,107	0,110	0,116	0,122	0,128	0,137	
Temperaturbereich II:	δ_{N0} - Faktor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110	
120°C / 72°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143	
Temperaturbereich III:	δ_{N0} - Faktor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412	
160°C / 100°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424	

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbeanspruchung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C11: Verschiebung unter Querbeanspruchung 1) (Innengewindeankerstange)

Ankerstange mit Innengewinde			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Ungerissener und gerisse	scher, qua	si-statische	r Belastun	g				
Alla Tarana arabarda arababa	δ_{V0} - Faktor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
Alle Temperaturbereiche	$\delta_{V_{\infty}}$ -Faktor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06

Berechnung der Verschiebung $\delta_{V0} = \delta_{V0}$ -Faktor \cdot V; einwirkende Querkraft

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V;$

Injektionssystem VMH für Beton	
Leistungen Verschiebungen (Innengewindeankerstange)	Anhang C9

Tabelle C12: Verschiebung unter Zugbeanspruchung 1) (Betonstahl)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Beton Ca	20/25 unter s	statischer und q	uasi-statischer Belastung								
Temperaturbereich I: 80°C / 50°C	δ_{N0} - Faktor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,063
Temperaturbereich II: 120°C / 72°C	δ_{N0} - Faktor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,050
	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,065
Temperaturbereich III: 160°C / 100°C	δ_{N0} - Faktor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,186
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,192
Gerissener Beton C20/	25 unter sta	tischer und qua	si-statis	cher Be	lastung						
Temperaturbereich I:	$\delta_{\text{N0}}\text{-}$ Faktor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,108
80°C / 50°C	$\delta_{N_\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,141
Temperaturbereich II:	$\delta_{\text{N0}}\text{-}$ Faktor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,113
120°C / 72°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,148
Temperaturbereich III:	δ_{N0} - Faktor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,425
160°C / 100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,449

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbeanspruchung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \quad \tau;$

Tabelle C13: Verschiebung unter Querbeanspruchung 1) (Betonstahl)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Gerissener und ungeri	tatische	r und q	uasi-sta	itischer	Belastu	ng					
Alle	δ_{V0} - Faktor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δ _{V∞} -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

Berechnung der Verschiebung $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-Faktor} \cdot \text{V}; \qquad \text{V: einwirkende Querkraft}$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -Faktor · V;

Injektionssystem VMH für Beton

Leistungen

Verschiebung (Betonstahl)

Anhang C10