

IZJAVA O SVOJSTVIMA

DoP Br. MKT-340 - hr

¢	Jedinstvena identifikacijska oznaka vrste proizvoda:	Injekcijski sustav VMH za beton
¢	Namjena/namjene:	Injekcijski sustav za sidrenje u betonu, vidi Prilog/Annex B
∻	Proizvođač:	MKT Metall-Kunststoff-Technik GmbH & Co.KG Auf dem Immel 2 67685 Weilerbach
∻	Sustav/sustavi za ocjenu i provjeru stalnosti svojstava (AVCP):	1
\$	Europski dokument za ocjenjivanje: Europska tehnička ocjena: Tijelo za tehničko ocjenjivanje: Prijavljeno tijelo/prijavljena tijela:	ETAG 001-5, 2013-04 ETA-17/0716, 08.12.2017 DIBt, Berlin NB 1343 – MPA, Darmstadt
∻	Objavljena svojstva:	

Bitnih značajka	Svojstva				
TEMELJNI ZAHTJEVI ZA GRAĐEVINE (BWR1)					
Karakteristični otpori za statičke i kvazistatičke opterećenja i karakteristični otpori za seizmičke performanse kategorije C1+C2	Prilog/Annex C1 – C7				
Pomaci	Prilog/Annex C8 – C10				
Sigurnost u slučaju požara (BWR2)					
Ponašanje požara	Klasa A1				
Otpornost na vatru	NPD (No Performance Determined) bez utvrđenog svojstva				

Prije utvrđeno svojstvo proizvoda u skladu je s objavljenim svojstvima. Ova izjava o svojstvima izdaje se, u skladu s Uredbom (EU) br. 305/2011, pod isključivom odgovornošću prethodno utvrđenog proizvođača.

Za proizvođača i u njegovo ime potpisao:

Stefan Weustenhagen (generalni direktor) Weilerbach, 08.12.2017

Br guller p.p.

Dipl.-Ing, Detlef Bigalke (Voditelj razvoja proizvoda)

Izvornik ove izjave o izvedbi pisan je na njemačkom jeziku. U slučaju odstupanja u prijevodu vrijedi njemačka verzija.

	Threaded rod	Internally threaded anchor rod	
Injection System VMH	VMU-A, V-A, VM-A, commercial standard threaded rod	VMU-IG	Rebar
Static or quasi-static action	M8 - M30 zinc plated, A4, HCR	IG-M6 - IG-M20 electroplated, A4, HCR	Ø8 - Ø32
Seismic action, category C1	M8 - M30 zinc plated ¹⁾ , A4, HCR	-	Ø8 - Ø32
Seismic action, category C2	M12 zinc plated ¹⁾ (strength class 8.8) A4, HCR	-	
	Reinforced or unreinforced n	ormal weight concrete a	acc. to EN 206-1:2000
Base materials	Strength classes ac	c. to EN 206-1:2000:C2	20/25 to C50/60
	Cracked	and uncracked concre	ete
Temperature Range I -40 °C to +80 °C	max long term temperature	-50 °C and max short ter	m temperature +80 °C
Temperature Range II -40 °C to +120 °C	max long term temperature	+72 °C and max short te	rm temperature +120 °C
Temperature Range III -40 °C to +160 °C	max long term temperature +	100 °C and max short te	rm temperature +160 °C
1			

1) except hot-dip galvanised

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed

Installation:

- Dry or wet concrete
- Hole drilling by hammer or compressed air drill or vacuum drill mode
- · Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible
 for technical matters of the site
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class
 of the internally threaded anchor rod

Injection System VMH for concrete

Intended Use

Specifications

Deutsches Institut für Bautechnik

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Diameter of threaded rod	d _{nom} =	[mm]	8	10	12	16	20	24	27	30		
Nominal drill hole diameter	d ₀ =	[mm]	10	12	14	18	22	28	30	35		
Effective anchorage depth -	h _{ef,min} =	[mm]	60	60	70	80	90	96	108	120		
Effective anchorage depth -		[mm]	160	200	240	320	400	480	540	600		
Diameter of clearance hole in the fixture ¹⁾		[mm]	9	12	14	18	22	26	30	33		
Installation torque	T _{inst} ≤	[Nm]	10	20	40 (35) ²⁾	60	100	170	250	300		
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀							
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140		
Minimum edge distance		[mm]	35	40	45	50	60	65	75	80		

Table B1: Installation parameters for threaded rods

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum $d_{nom} + 1$ mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar ²⁾ Installation torque for M12 with steel grade 4.6

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor ro	d		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	d ₂ =	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ²⁾	$d_{nom} =$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	22	28	35
Effective anchorage depth	h _{ef,min} =	[mm]	60	70	80	90	96	120
Effective anchorage depth	h _{ef.max} =	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	l _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	\mathbf{h}_{\min}	[mm]		h _{ef} + 30 mm ≥ 100 mm		h _{ef} +	- 2d ₀	
Minimum spacing	S _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ For larger clearance hole see TR029 section 1.1

²⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter of rebar	$d = d_{nom} =$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ =	[mm]	12	14	16	18	20	25	32	35	40
Effective anchorage depth	h _{ef,min} =	[mm]	60	60	70	75	80	90	100	112	128
Ellective allchorage depth	h _{ef,max} =	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀)			
Minimum spacing	S _{min}	[mm]	40	50	60	70	75	95	120	130	150
Minimum edge distance	C _{min}	[mm]	35	40	45	50	50	60	70	75	85
Injection System VMH for concrete											

Intended use

Installation parameters

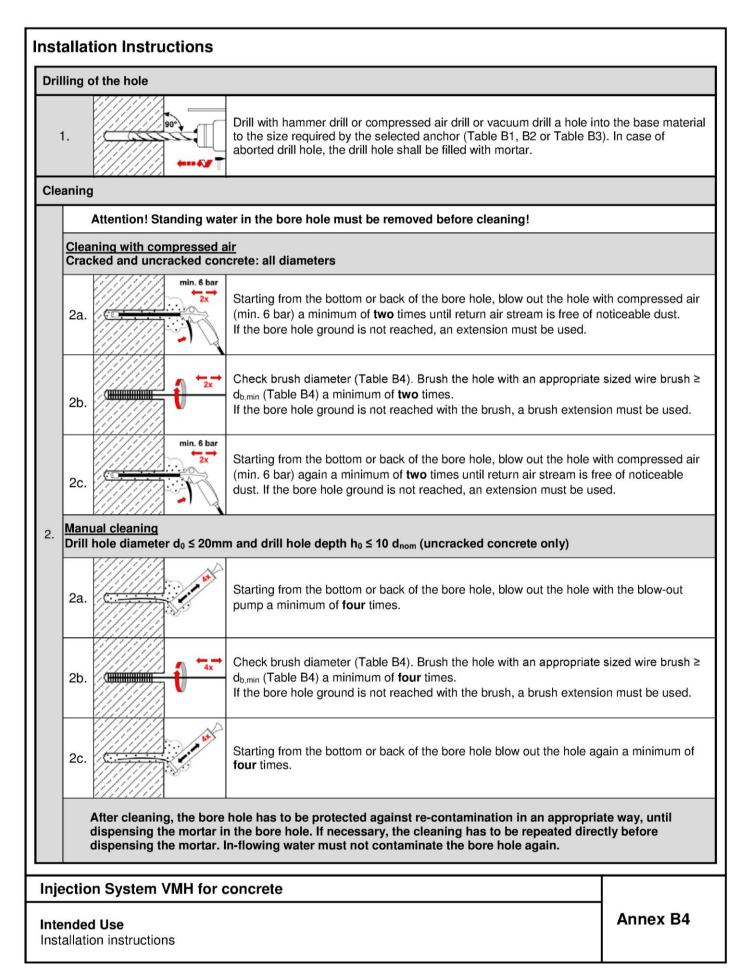
Annex B2

Table B4: Parameter cleaning and setting tools													
Threaded rod	Rebar	Internally threaded anchor rod	Drill bit Ø	Brush Ø	min. Brush Ø		Retaining washer						
¢	4111111111111						Installation direction and use of retaining washer						
[-]	Ø [mm]	[-]	d₀ [mm]	d₀ [mm]	d _{b,min} [mm]	[-]	↓	⇒	1				
M8			10	11,5	10,5								
M10	8	VMU-IG M 6	12	13,5	12,5								
M12	10	VMU-IG M 8	14	15,5	14,5	-	No retaining washer required						
	12		16	17,5	16,5	-							
M16	14	VMU-IG M10	18	20,0	18,5	VM-IA 18							
	16		20	22,0	20,5	VM-IA 20							
M20		VMU-IG M12	22	24,0	22,5	VM-IA 22							
	20		25	27,0	25,5	VM-IA 25	b	14					
M24		VMU-IG M16	28	30,0	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all				
M27			30	31,8	30,5	VM-IA 30	2001111	2001111					
	25		32	34,0	32,5	VM-IA 32							
M30	28	VMU-IG M20	35	37,0	35,5	VM-IA 35							
	32		40	43,5	40,5	VM-IA 40							

Blow-out pump (volume 750ml) Drill bit diameter (d_0) : 10 mm to 20 mm Drill hole depth (h_0) : \leq 10 d_{nom} for uncracked concrete

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Retaining washer for overhead or horizontal installation Drill bit diameter (d₀): 18 mm to 40 mm



Steel brush Drill bit diameter (d₀): all diameters

Injection System VMH for concrete

Intended Use Cleaning and setting tools Annex B3

Insta	allation instruction	s (continuation)								
Inje	ection									
3.	ALL J	Attach the supplied static-mixing nozzle to the cartridge and load the cartr dispensing tool. For every working interruption longer than the recommended working time as for new cartridges, a new static-mixer shall be used.								
4.	her	Prior to inserting the rod into the filled bore hole, the position of the embed be marked on the threaded rod or rebar	dment depth shall							
5.	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum or and discard non-uniformly mixed adhesive components until the mortar sh grey colour.	of three full strokes nows a consistent							
6a.		Starting from the bottom or back of the cleaned drill hole fill the hole up to two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hockets. For embedment larger than 190 mm, an extension nozzle shall b Observe working times given in Table B5.	nole fills to avoid air							
6b.		 Retaining washer and mixer nozzle extensions shall be used according to Table B4 for the following applications: Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm Overhead installation: Drill bit-Ø d₀ ≥ 18 mm 								
Inje	ction System VMH f	or concrete								
	Installation instructions (continuation)									

Inst	allation instruction	s (continuation)
Inser	ting the anchor	
7.		Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.
8.		Make sure that the anchor is fully seated up to the full embedment depth and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead installation, the anchor should be fixed (e.g. by wedges).
9.		Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).
10.		Remove excess mortar.
11.	Tinst	The fixture can be mounted after curing time. Apply installation torque T _{inst} according to Table B1 or B2 by using a calibrated torque wrench.
12.		Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Tabelle B1: Working time and curing time

Concrete temperature	Maximum	Minimum cu	Iring time					
Concrete temperature	working time	dry concrete	wet concrete					
-5°C to -1°C	50 min	5 h	10 h					
0°C to +4°C	25 min	3,5 h	7 h					
+5°C to +9°C	15 min	2 h	4 h					
+10°C to +14°C	10 min	1 h	2 h					
+15°C to +19°C	6 min	40 min	80 min					
+20°C to +29°C	3 min	30 min	60 min					
+30°C to +40°C	2 min	30 min	60 min					
Cartridge temperature	+ 5°C to + 40°C							

Injection System VMH for concrete

Intended Use

Installation instructions (continuation) Working and curing time Annex B6

Thread	ed rod			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30		
Steel fa	ailure				-			-					
Tensio	n load												
e	Steel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224		
stic tano	Steel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280		
steri esis	Steel, Property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449		
Characteristic tension resistance	Stainless steel A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281		
C	Stainless steel A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-		
	Steel, Property class 4.6	γMs,N	[-]				2	,0					
	Steel, Property class 4.8	γMs,N	[-]	1,5									
ctor	Steel, Property class 5.6	γMs,N	[-]	2,0									
Partial factor	Steel, Property class 5.8	γMs,N	[-]	1,5									
artia	Steel, Property class 8.8	γMs,N	[-]	1,5									
Å,	Stainless steel A4 and HCR, Property class 50	γMs,N	[-]	2,86									
	Stainless steel A4 and HCR, Property class 70	γMs,N	[-]	1,87 -						-			
Shear I	oad												
Steel fa	ailure <u>without</u> lever arm												
e	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112		
istic tanc	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140		
cter	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224		
Characteristic shear resistance	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140		
	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-		
Steel fa	ailure <u>with</u> lever arm												
ic ent	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900		
	Steel, Property class 5.6 and 5.8		[Nm]	19	37	65	166	324	560	833	1123		
d mo	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797		
Characterist bending mom	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	112		
) be	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-		
	Steel, Property class 4.6	γMs,V	[-]				1,	67					
	Steel, Property class 4.8	γMs,V	[-]					25					
ctor	Steel, Property class 5.6	γMs,V	[-]				-	67					
Partial factor	Steel, Property class 5.8	γMs,V	[-]				1,	25					
artia	Steel, Property class 8.8	γMs,V	[-]				1,:	25					
Å	Stainless steel A4 and HCR, Property class 50	γMs,V	[-]				2,	38					
	Stainless steel A4 and HCR, Property class 70	γMs,V	[-]			1,	56			-	-		

Injection System VMH for concrete

Performance

Characteristic values for threaded rods under tension and shear loads

Annex C1

Table C2: Charact	eristic values of atic, quasi-stati										
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure					-						
		N _{Rk,s}	[kN]				see Ta	able C1			
Characteristic tension resi	stance	N _{Rk,s,C1}	[kN]	1,0 • N _{Rk,s}							
		N _{Rk,s,C2}	[kN]	NPD 1,0 · No Pe			erforman	ice Dete	ermined	(NPD)	
Partial factor		γMs,N	[-]				see Ta	able C1			
Combined pull-out and o	concrete failure			-							
Characteristic bond resi	stance in uncracke	d concre	te C20/25	;							
Temperature range I: 80°C / 50°C		$\tau_{Rk,ucr}$	[N/mm ²]	17	17	16	15	14	13	13	13
Temperature range II: 120°C / 72°C		$\tau_{Rk,ucr}$	[N/mm²]	15	14	14	13	12	12	11	11
Temperature range III: 160°C / 100°C		$\tau_{Rk,ucr}$	[N/mm²]	12	12	11	10	9,5	9,0	9,0	9,0
Characteristic bond resistance in cracked concrete C20/25											
Temperature range I:	τ _{Rk}	$cr = \tau_{Rk,C1}$	[N/mm ²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5
80°C / 50°C		$\tau_{\text{Rk,C2}}$	[N/mm²]	N	PD	3,6	No Pe	erforman	ice Dete	ermined	(NPD)
Temperature range II:	τ _{Rk}		[N/mm²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,5
120°C / 72°C		$\tau_{\text{Rk},\text{C2}}$	[N/mm ²]		PD	3,1 No Performance Determined				, <i>,</i>	
Temperature range III: 160°C / 100°C	τ _{Rk}	$cr = \tau_{Rk,C1}$	[N/mm ²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,5
		τ _{Rk,C2}	[N/mm ²]		PD	2,5		erforman	ice Dete	erminea	(NPD)
			C25/30	1,02							
			C30/37 C35/45				,	04			
Increasing factors for cond	crete	Ψc	C35/45 C40/50				,	08			
			C40/50 C45/55				,	09			
			C50/60					10			
Factor according to	uncracked concret	<u>a</u>						D,1			
CEN/TS1992-4-5	cracked concret	- ka	[-]					,2			
		•					/	,2			
Concrete cone failure	uncracked concret		[[]					2.1			
Factor according to CEN/TS1992-4-5			[-]					D,1			
	cracked concret	e k _{cr}	[-]				7	,2			
Splitting failure		- 1	1								
	$h/h_{ef} \ge 2,$) h _{ef}			
Edge distance	2,0> h/h _{ef} > 1,		[mm]			2		5 – h / h	ef)		
h/h _{ef} ≤		3					2,4	I h _{ef}			
Spacing							2 c	Cr,sp			
Installation factor Compressed air cleaning	g	$\gamma_2 = \gamma_{inst}$	[-]	1,0 (1,2) ¹⁾ 1,2							
Installation factor Manual cleaning		$\gamma_2 = \gamma_{inst}$	[-]		1	,2				-	
¹⁾ Value in brackets for cracked	d concrete										

Injection System VMH for concrete

Performance

Characteristic values of tension loads for threaded rods

Annex C2

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure <u>without</u> lever arm									1			
	$V_{Rk,s}$	[kN]				see Ta	able C1					
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]		0,70 · V _{Rk,s}								
	$V_{Rk,s,C2}$	[kN]	N	PD	0,80 • V _{Rk,s}	No	Performa	nce Dete	rmined (N	PD)		
Partial factor	γ̂Ms,∨	[-]				see Ta	able C1					
Steel failure <u>with</u> lever arm												
	$M^0{}_{Rk,s}$	[Nm]				see Ta	able C1					
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No Dorf		Determine					
	M ⁰ _{Rk,s,C2}	[Nm]			No Peri	ormance	Determine	ea (NPD)				
Partial factor	γ _{Ms,V}	[-]				see Ta	able C1					
Concrete pry-out failure												
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	$k_{(3)}$	[-]	2,0									
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0					
Concrete edge failure												
Effective length of anchor	I _f	[mm]				l _f = min(h	ı _{ef} ; 8 d _{nom})					
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0					
Injection System VMH for	r concret	e										
Performance Characteristic values of shea	r loads for	threa	ded rod	s					Annex	C3		

Table C4: Characteristic values of tension loads for internally threaded anchor rod under static, guasi-static action Internally threaded anchor rod IG-M 6 IG-M 8 IG-M 10 | IG-M 12 IG-M 16 IG-M 20 Steel failure 1) Characteristic tension resistance, 123 N_{Rk,s} [kN] 10 18 29 42 79 Steel, strength class 5.8 Partial factor [-] 1.5 γMs,N Characteristic tension resistance. [kN] 46 121 196 16 27 67 N_{Rk,s} Steel, strength class 8.8 Partial factor [-] 1.5 γMs,N Characteristic tension resistance. 124 ³⁾ [kN] 14 26 41 59 110 N_{Rk,s} Stainless steel A4 / HCR, strength class 70 1.87 Partial factor [-] 2.86 γMs,N Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete C20/25 Temperature range I: 17 15 [N/mm²] 16 14 13 13 τ_{Rk.ucr} 80°C / 50°C Temperature range II: [N/mm²] 14 14 13 12 12 11 $\tau_{Rk,ucr}$ 120°C / 72°C Temperature range III: [N/mm²] 12 10 9.0 11 9.5 9.0 τ_{Rk,ucr} 160°C / 100°C Characteristic bond resistance in cracked concrete C20/25 Temperature range I: [N/mm²] 7.0 7,5 8.5 8.5 8.5 8.5 TRk.cr 80°C / 50°C Temperature range II: 6.0 7.5 7.5 7.5 7.5 [N/mm²] 6.5 τ_{Rk,cr} 120°C / 72°C Temperature range III: [N/mm²] 5.5 6.0 6.5 6.5 6.5 6.5 $\tau_{\text{Rk,cr}}$ 160°C / 100°C C25/30 1,02 C30/37 1,04 C35/45 1,07 Increasing factors for concrete Ψc C40/50 1,08 C45/55 1,09 C50/60 1,10 10.1 uncracked concrete Factor according to k_8 [-] CEN/TS1992-4-5 7,2 cracked concrete Concrete cone failure uncracked concrete k_{ucr} [-] 10.1 Factor according to CEN/TS1992-4-5 7,2 cracked concrete [-] k_{cr} Splitting failure 1,0 h_{ef} $h/h_{ef} \ge 2,0$ $2 * h_{ef} (2,5 - h / h_{ef})$ Edge distance $2,0>h/h_{ef}>1,3$ C_{cr,sp} [mm] h/h_{ef} ≤ 1,3 2,4 h_{ef} Spacing S_{cr,sp} [mm] 2 c_{cr,sp} Installation factor $1,0(1,2)^{2}$ 1,2 [-] $\gamma_2 = \gamma_{inst}$ Compressed air cleaning Installation factor 1.2 [-] $\gamma_2 = \gamma_{inst}$ Manual cleaning Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element ²⁾ Value in brackets for cracked concrete ³⁾ For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Injection System VMH for concrete

Performance

Characteristic values of tension loads for internally threaded anchor rod

Annex C4

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 2
Steel failure <u>without</u> lever arm ¹⁾								
Characteristic shear resistance Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	61
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic shear resistance Steel, strength class 8.8	V _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic shear resistance Stainless steel A4 / HCR, strength class 70	V _{Rk,s}	[kN]	7	13	20	30	55	62 ²⁾
Partial factor	γ _{Ms,V}	[-]			1,56			2,38
Steel failure <u>with</u> lever arm ¹⁾								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic bending moment, Steel, strength class 8.8	${\sf M}^0{}_{\sf Rk,s}$	[Nm]	12	30	60	105	267	519
Partial factor	γ _{Ms,V}	[-]			1,	25		
Characteristic bending moment, Stainless steel A4 / HCR, strength class 70	${\sf M}^0_{{\sf R}{\sf k},{\sf s}}$	[Nm]	11	26	53	92	234	643 ²⁾
Partial factor	γ _{Ms.V}	[-]			1,56			2,38
Concrete pry-out failure								
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]			2	,0		
Concrete edge failure			1					
Effective length of anchor	l _f	[mm]			l _f = min(h	_{ef} ; 8 d _{nom})		
Dutside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30
nstallation factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		
Fastening screws or threaded rods (incl threaded anchor rod. The characteristic rod and the fastening element For VMU-IG M20: Internally threaded ro	shear resista	ance for st	teel failure of	the given stre	ngth class are	valid for the	internally thre	aded anch

Z1577.18

Characteristic values of shear loads for internally threaded anchor rod

Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension re-	sistance N _{Rk,s} =	= N _{Rk,s,C1}	[kN]					$A_{s} \cdot f_{uk}^{1}$)			
Cross section area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]					1,4 ²⁾				
Combined pull-out and	concrete failure	• • • •										
Characteristic bond res	sistance in <u>uncrack</u>	<u>ed</u> concr	ete C20/25	5								
Temperature range I: 80°C / 50°C		$\tau_{Rk,ucr}$	[N/mm²]	14	14	14	14	13	13	13	13	13
Temperature range II: 120°C / 72°C		τ _{Rk,ucr}	[N/mm²]	13	12	12	12	12	11	11	11	11
Temperature range III: 160°C / 100°C		τ _{Rk,ucr}	[N/mm²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0
Characteristic bond res	sistance in <u>cracked</u>	concrete	e C20/25									
Temperature range I: 80°C / 50°C	τ _{Rk,c}	$r = \tau_{Rk,C1}$	[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
Temperature range II: 120°C / 72°C	τ _{Rk,c}	$r = \tau_{Rk,C1}$	[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0
Temperature range III: 160°C / 100°C	τ _{Rk,c}	$r = \tau_{Rk,C1}$	[N/mm ²]	4,0	4,5	4,5	5,0	5,5	6,0	6,0	5,5	6,5
			C25/30					1,02				
			C30/37					1,04				
ncreasing factor for concrete		Ψc	C35/45					1,07				
		C40/50					1,08					
	0		C45/55					1,09				
	uncracked concrete		C50/60					1,10				
Factor according to CEN/TS1992-4-5		k ₈	[-]					10,1				
Concrete cone failure	cracked concrete							7,2				
	uncracked concrete	k _{ucr}	[-]					10,1				
Factor according to CEN/TS1992-4-5	cracked concrete	k _{cr}	[-]					7,2				
Splitting failure		NCr						7,2				
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				2 * h _{ef}	(2,5 -	h / h _{ef})			
-	h/h _{ef} ≤ 1,3							2,4 h _{ef}				
Spacing		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation factor Compressed air cleanii	ng	$\gamma_2 = \gamma_{inst}$	[-]		1	,0 (1,2)	3)			1,	,2	
Installation factor Manual cleaning	•	$\gamma_2 = \gamma_{inst}$	[-]			1,2						
⁹ f _{uk} shall be taken from the s ⁹ in absence of nation regula ⁹ Value in brackets for crack	ation	ing bars										

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	$V_{Rk,s}$	[kN]				0,5	50 • A _s • 1	fuk ¹⁾			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]				0,3	$37 \cdot A_{s} \cdot 1$	fuk ¹⁾			
Cross section area	As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]			1	1	1,5 ²⁾	1			
Ductility factor according to CEN/TS 1992-4-5	k ₂	[-]					0,8				
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]				1,2	₂ • W _{el} • f	uk ¹⁾			
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No P	erforma	nce Dete	rmined (NPD)		
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ̃ms,∨	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]					2,0				
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
Concrete edge failure	-										
Effective length of rebar	١ _f	[mm]				l _f = n	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
¹⁾ f _{uk} shall be taken from the specificati	ons of reinfo	rcing bar	S								
²⁾ in absence of nation regulation											

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete C	20/25 under	static and qua	si-static a	action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C / 50°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C / 72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C / 100°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete C20	25 under st	atic and quasi-	static act	ion		-				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C / 50°C	$\frac{\delta_{No}\text{-factor}}{\delta_{No}\text{-factor}} \begin{bmatrix} \text{mm/(N/m)} \\ \text{mm/(N/m)} \\ \frac{\delta_{No}\text{-factor}}{\delta_{No}\text{-factor}} \begin{bmatrix} \text{mm/(N/m)} \\ \text{mm/(N/m)} \\ \frac{\delta_{No}\text{-factor}}{\delta_{No}\text{-factor}} \begin{bmatrix} \text{mm/(N/m)} \\ \text{mm/(N/m)} \\ \frac{\delta_{No}\text{-factor}}{\delta_{No}\text{-factor}} \end{bmatrix}$		0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,13
$\frac{\delta_{N^{\infty}}}{\delta_{N^{\infty}}} = \frac{\delta_{N^{\infty}}}{\delta_{N^{\infty}}} = \frac{\delta_{N^{\infty}}}{\delta_{$				0,110						
120°C / 72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,41
160°C / 100°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,42
Cracked concrete C20	25 under se	eismic action (C	2)							
All $\delta_{N,seis}$	(NE	PD)	0,120	No	Performa	nce Deter	mined (N			
anges $\delta_{N,seis}$	[mm/(N/mm ²)]	(INF	-0)	0,140		renoma	lice Delei	mined (N	FD)	
¹⁾ Calculation of the dis $\delta_{N0} = \delta_{N0}$ - factor $\cdot \tau$; $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$; Table C9: Displ	-	$\begin{array}{l} \delta_{N,seis(DLS)} = \delta_{N,s}\\ \delta_{N,seis(ULS)} = \delta_{N,s} \end{array}$	eis(ULS)-fac	tor · τ;		ng bond s	tress for t	ension		
Threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Uncracked and cracke	d concrete (C20/25 updar at					IVI 20	11/24	IVI 27	101 50
	δ _{vo} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
All temperature ranges										
Que also d'a companyata (202	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete C20/			;2)		0.07					
emperature	s(DLS) -factor	[mm/(kN)]	(NF	PD)	0,27	No	Performa	nce Deter	mined (N	PD)
ranges δ _{V,seis(ULS)} -factor [mm/(kN)]					0,27					
		$V_{\rm (seis(DLS)} = \delta_{\rm V, seis(DLS)}$			V	: acting sl	near load			
¹⁾ Calculation of the dis $\delta_{V0} = \delta_{V0}$ -factor \cdot V; $\delta_{V\infty} = \delta_{V\infty}$ -factor \cdot V;		$V_{\rm seis(ULS)} = \delta_{V,\rm seis(ULS)}$	_{ULS)} - facto	or ·V;						

Internally threaded and	hor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked concrete C2	0/25 under s	tatic and quasi-	-static actio	on	-		-	
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C / 100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete C20/2	25 under stat	ic and quasi-st	atic action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,107	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,168 0,099 0,128 0,103	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau;$

Table C11: Displacements under shear load¹⁾ (internally threaded anchor rod)

Internally threaded anche	or rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked and cracked of	concrete C20	/25 under sta	tic and qua	si-static act	ion			
	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
All temperature ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06
¹⁾ Calculation of the displa $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;	V: act						_	
Injection System VM	IH for cond	crete						
Performance Displacements (internal	ly threaded a	anchor rod)					Anne	ex C9

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C2	20/25 under :	static and quas	i-static a	action							
Temperature range I:	$\delta_{\text{N0}}\text{-}\text{factor}$	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048
80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,063
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,050
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,065
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,186
160°C / 100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,192
Cracked concrete C20/2	25 under sta	tic and quasi-s	tatic act	ion							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,108
80°C / 50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,058 0,047 0,060 0,172 0,177 0,103 0,103 0,103 0,103 0,103 0,103 0,103 0,103 0,103 0,103 0,103 0,103 0,103	0,141
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,113
120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,148
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,425
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,449
$ \begin{array}{l} ^{1)} \mbox{Calculation of the dis} \\ \delta_{N0} = \delta_{N0} \mbox{-factor} \ \cdot \ \tau; \\ \delta_{N\infty} = \delta_{N\infty} \mbox{- factor} \ \cdot \ \tau; \end{array} $		acting bond stree	ss for ter	nsion						1	

Table C13: Displacements under shear load¹⁾ (rebar)

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Cracked and uncracked	concrete C20	/25 under sta	tic and	quasi-st	atic act	ion					
	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
All temperature ranges -	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
$\begin{array}{l} \delta_{V0} = \delta_{V0} \text{-factor} & \cdot \ V; \\ \delta_{V\infty} = \delta_{V\infty} \text{-factor} & \cdot \ V; \end{array}$		ting shear loac	1						_		
Injection System VI Performance	MH for cond	crete							– Ar	nnex (C10