

DECLARAȚIA DE PERFORMANȚĂ

DoP Nr.: MKT-340 - ro

♦ Cod unic de identificare al produsului-tip: Sistem de injecţie VMH pentru beton

Utilizare (utilizări) preconizată (preconizate): Sistem de injectare pentru ancorarea în beton,

a se vedea anexa / Annex B

♦ Fabricant: MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

♦ Sistemul (sistemele) de evaluare și de

verificare a constanței performanței:

♦ Documentul de evaluare european: ETAG 001-5, 2013-04

Evaluarea tehnică europeană: ETA-17/0716, 08.12.2017

Organismul de evaluare tehnică: DIBt, Berlin

Organism (organisme) notificat(e): NB 1343 – MPA, Darmstadt

→ Performanţa (performanţe) declarată (declarate):

Caracteristici esențiale	Performanţă
Rezistență mecanică și stabilitate (BWR1)	
Rezistențe caracteristice pentru sarcini statice și cvasistatice și rezistențe caracteristice pentru categoriile de performanță seismică C1 + C2	Anexa/Annex C1 – C7
Schimbare	Anexa/Annex C8 – C10
Securitatea la incendiu (BWR2)	
Comportamentul la foc	Clasa A1
Rezistență la foc	NPD (No Performance Determined) nicio performanță determinată

Performanța produsului identificat mai sus este în conformitate cu setul de performanțe declarate. Această declarație de performanță este eliberată în conformitate cu Regulamentul (UE) nr. 305/2011, pe răspunderea exclusivă a fabricantului identificat mai sus.

Semnată pentru și în numele fabricantului de către:

Stefan Weustenhagen (Director general)

Weilerbach, 08.12.2017

Dipl.-Ing Detlef Bigalke

(Sef de dezvoltare a produselor)

Originalul acestei declarații de performanță a fost scris în limba germană. În cazul abaterilor în traducere, versiunea germană este validă.

Specification of intended use

	Threaded rod	Internally threaded anchor rod						
Injection System VMH	VMU-A, V-A, VM-A, commercial standard threaded rod	VMU-IG	Rebar					
Static or quasi-static action	M8 - M30 zinc plated, A4, HCR	IG-M6 - IG-M20 electroplated, A4, HCR	Ø8 - Ø32					
Seismic action, category C1	M8 - M30 zinc plated ¹⁾ , A4, HCR	-	Ø8 - Ø32					
Seismic action, category C2	M12 zinc plated ¹⁾ (strength class 8.8) A4, HCR	M12 zinc plated ¹⁾ (strength class 8.8)						
	Reinforced or unreinforced n	ormal weight concrete	acc. to EN 206-1:2000					
Base materials	Strength classes ac	c. to EN 206-1:2000:C2	20/25 to C50/60					
	Cracked	d and uncracked concre	ete					
Temperature Range I -40 °C to +80 °C max long term temperature +50 °C and max short term temperature +								
Temperature Range II -40 °C to +120 °C max long term temperature +72 °C and max short term temperatu								
Temperature Range III -40 °C to +160 °C	erature Range III -40 °C to +160 °C max long term temperature +100 °C and max short term temperature +1							

¹⁾ except hot-dip galvanised

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the
 anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed

Installation:

- Dry or wet concrete
- · Hole drilling by hammer or compressed air drill or vacuum drill mode
- Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class
 of the internally threaded anchor rod

Injection System VMH for concrete	
Intended Use Specifications	Annex B1

Table B1: Installation parameters for threaded rods

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Diameter of threaded rod	$d_{nom} =$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter	$d_0 =$	[mm]	10	12	14	18	22	28	30	35
Effective anchorage depth -	$h_{ef,min} =$	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth =		[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾		[mm]	9	12	14	18	22	26	30	33
Installation torque	T _{inst} ≤	[Nm]	10	20	40 (35) ²⁾	60	100	170	250	300
Minimum thickness of member	h _{min}	[mm]		_{∍f} + 30 m ≥ 100 mn		h _{ef} + 2d ₀				
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance		[mm]		40	45	50	60	65	75	80

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d_{nom} + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar ²⁾ Installation torque for M12 with steel grade 4.6

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor ro	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Inner diameter of threaded rod	$d_2 =$	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ²⁾	$d_{nom} =$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	22	28	35
Effective anchorage depth	$h_{ef,min} =$	[mm]	60	70	80	90	96	120
Lifective anchorage depth	h _{ef,max} =	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	I _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	S _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ For larger clearance hole see TR029 section 1.1 2) With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter of rebar	$d = d_{nom} =$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	16	18	20	25	32	35	40
Effective enclosures double	$h_{ef,min} =$	[mm]	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} =	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀						
Minimum spacing	S _{min}	[mm]	40	50	60	70	75	95	120	130	150
Minimum edge distance	C _{min}	[mm]	35	40	45	50	50	60	70	75	85

Injection System VMH for concrete Intended use Installation parameters Annex B2

Table B4: Parameter cleaning and setting tools

Threaded rod	Rebar	Internally threaded anchor rod	Drill bit	Brush Ø	min. Brush Ø	Retaining washer				
	977777777			3######	###		Installation direction and use of retaining washer			
[-]	Ø [mm]	[-]	d ₀ [mm]	d ь [mm]	d _{b,min} [mm]	[-]	•	→	1	
M8			10	11,5	10,5	+	,			
M10	8	VMU-IG M 6	12	13,5	12,5		No vetelala a vezeban a seria d			
M12	10	VMU-IG M 8	14	15,5	14,5	-	No retaining washer required			
	12		16	17,5	16,5	-				
M16	14	VMU-IG M10	18	20,0	18,5	VM-IA 18				
	16		20	22,0	20,5	VM-IA 20				
M20		VMU-IG M12	22	24,0	22,5	VM-IA 22				
	20		25	27,0	25,5	VM-IA 25		6. %		
M24		VMU-IG M16	28	30,0	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all	
M27			30	31,8	30,5	VM-IA 30	20011111	23011111		
	25		32	34,0	32,5	VM-IA 32				
M30	28	VMU-IG M20	35	37,0	35,5	VM-IA 35				
	32		40	43,5	40,5	VM-IA 40				

Blow-out pump (volume 750ml)Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h_0) : $\leq 10 d_{nom}$ for uncracked concrete

Recommended compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

Retaining washer for overhead or horizontal installation

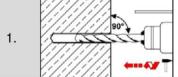
Drill bit diameter (d₀): 18 mm to 40 mm

Steel brush

Drill bit diameter (d₀): all diameters

Injection System VMH for concrete

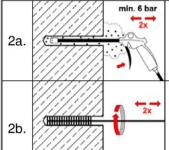
Intended Use


Cleaning and setting tools

Annex B3

Installation Instructions

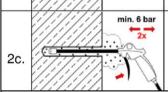
Drilling of the hole


Drill with hammer drill or compressed air drill or vacuum drill a hole into the base material to the size required by the selected anchor (Table B1, B2 or Table B3). In case of aborted drill hole, the drill hole shall be filled with mortar.

Cleaning

Attention! Standing water in the bore hole must be removed before cleaning!

Cleaning with compressed air


Cracked and uncracked concrete: all diameters

Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) a minimum of **two** times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush \geq d_{b,min} (Table B4) a minimum of **two** times.


If the bore hole ground is not reached with the brush, a brush extension must be used.

Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) again a minimum of **two** times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension must be used.

2. Manual cleaning

Drill hole diameter d₀ ≤ 20mm and drill hole depth h₀ ≤ 10 d_{nom} (uncracked concrete only)

Starting from the bottom or back of the bore hole, blow out the hole with the blow-out pump a minimum of **four** times.

2b. (1) (1) (1) (1) (1)

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush \geq d_{b,min} (Table B4) a minimum of **four** times.

If the bore hole ground is not reached with the brush, a brush extension must be used.

Starting from the bottom or back of the bore hole blow out the hole again a minimum of **four** times.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Injection System VMH for concrete

Intended Use

2c.

Installation instructions

Annex B4

Installation instructions (continuation)

Inje	ection	
3.	WILL S	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.
4.	her	Prior to inserting the rod into the filled bore hole, the position of the embedment depth shall be marked on the threaded rod or rebar
5.	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.
6a.		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. For embedment larger than 190 mm, an extension nozzle shall be used. Observe working times given in Table B5.
6b.		Retaining washer and mixer nozzle extensions shall be used according to Table B4 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250mm • Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Injection System VMH for concrete

Intended Use

Installation instructions (continuation)

Annex B5

Installation instructions (continuation) Inserting the anchor Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. 7. The anchor shall be free of dirt, grease, oil or other foreign material. Make sure that the anchor is fully seated up to the full embedment depth and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the 8. application has to be renewed. For overhead installation, the anchor should be fixed (e.g. by Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not 9. move or load the anchor until it is fully cured (attend Table B5). 10. Remove excess mortar. TINST The fixture can be mounted after curing time. Apply installation torque T_{inst} according to Table 11. B1 or B2 by using a calibrated torque wrench. Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on 12. static mixer. Annular gap is completely filled, when excess mortar seeps out.

Tabelle B1: Working time and curing time

Concrete	ton	anaratura	Maximum	Minimum cı	uring time			
Concrete	ncrete temperature		working time	dry concrete	wet concrete			
-5°C	to	-1°C	50 min	5 h	10 h			
0°C	to	+4°C	25 min	3,5 h	7 h			
+5°C	to	+9°C	15 min	2 h	4 h			
+10°C	to	+14°C	10 min	1 h	2 h			
+15°C	to	+19°C	6 min	40 min	80 min			
+20°C	to	+29°C	3 min	30 min	60 min			
+30°C	to	+40°C	2 min	30 min	60 min			
Cartridge	e ten	nperature		+ 5°C to + 40°C				

Injection System VMH for concrete	
Intended Use Installation instructions (continuation) Working and curing time	Annex B6

Table	C1: Characteristic steel resis resistance	tance for	threa	aded	rods	under	r tensi	on an	d she	ar	
Thread	ed rod			М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel fa	illure										
Tension	n load										
- g	Steel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
stic	Steel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
terik esist	Steel, Property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resistance	Stainless steel A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
ten	Stainless steel A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
	Steel, Property class 4.6	γMs,N	[-]					,0			
	Steel, Property class 4.8	γMs,N	[-]					,5			
ctor	Steel, Property class 5.6	γMs,N	[-]					,0			
Partial factor	Steel, Property class 5.8	γMs,N	[-]					,5			
artis	Steel, Property class 8.8	γMs,N	[-]				1	,5			
ď	Stainless steel A4 and HCR, Property class 50 Stainless steel A4 and HCR,	γMs,N	[-]				2,	86		ı	
	Property class 70	γMs,N	[-]			1,	87			-	-
Shear le	oad										
Steel fa	ilure <u>without</u> lever arm										
	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
istic	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
cter	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
Steel fa	ilure <u>with</u> lever arm										
, t	Steel, Property class 4.6 and 4.8		[Nm]	15	30	52	133	260	449	666	900
istic	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
cter J mo	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
o aq	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
	Steel, Property class 4.6	[-]				1,	67				
	Steel, Property class 4.8	[-]	1,25								
ctor	Steel, Property class 5.6		[-] [-]	1,67							
ıl far	Steel, Property class 5.8 $\gamma_{Ms,v}$							25			
artia	Steel, Property class 5.6 $\gamma_{Ms,V}$ [-] Steel, Property class 5.8 $\gamma_{Ms,V}$ [-] Steel, Property class 8.8 $\gamma_{Ms,V}$ [-] Stainless steel A4 and HCB.						1,	25			
<u> </u>	Stainless steel A4 and HCR, Property class 50	γMs,V	[-]	2,38							
	Stainless steel A4 and HCR, Property class 70	γMs,V	[-]			1,	56			-	-

Injection System VMH for concrete	
Performance Characteristic values for threaded rods under tension and shear loads	Annex C1

Table C2: Characteristic values of **tension loads** for **threaded rods** under static, quasi-static action and seismic action C1 + C2

Threaded rod					М8	M10	M12	M16	M20	M24	M27	M30	
Steel failure				·									
		N	Rk,s	[kN]				see Ta	ıble C1				
Characteristic tension res	sistance	N _{Rk,}	s,C1	[kN]		1,0 ⋅ N _{Rk,s}							
		$N_{Rk,s,C2}$		[kN]	NPD		1,0 •						
Partial factor				[-]			$N_{Rk,s}$	see Table C1					
Combined pull-out and	concrete failure		/ls,N	- []				300 10	ibic O1				
Characteristic bond res		ked con	cret	e C20/25									
Temperature range I: 80°C / 50°C				[N/mm²]	17	17	16	15	14	13	13	13	
Temperature range II: 120°C / 72°C		τ _{Rk,ucr}		[N/mm²]	15	14	14	13	12	12	11	11	
Temperature range III: 160°C / 100°C		τ _{Rk,ucr}		[N/mm²]	12	12	11	10	9,5	9,0	9,0	9,0	
Characteristic bond res	sistance in cracked	d concre	te C	20/25									
Temperature range I:		$\tau_{Rk,cr} = \tau_{Rl}$	k,C1	[N/mm²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5	
80°C / 50°C		τ _{Rk,C2}		[N/mm²]	NF	PD	3,6	No Performance Determined (N			(NPD		
Temperature range II:	_1			[N/mm²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,5	
120°C / 72°C				[N/mm²]	NF	PD	3,1	No Performance Determined (N			(NPD		
Temperature range III:		$\tau_{Rk,cr} = \tau_{Rl}$	k,C1	[N/mm ²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,5	
160°C / 100°C		τ _{Rk,C2}		[N/mm ²]	NF	PD	2,5	No Performance Determined (NP			(NPD)		
				C25/30	1,02								
				C30/37	,								
Increasing factors for cor	ncrete		Ψc	C35/45	1,07								
g			**	C40/50					80				
				C45/55	1,09								
				C50/60				1,	10				
Factor according to	uncracked conci	rete						10),1				
CEN/TS1992-4-5	cracked conci	rete	k ₈	[-]				7	,2				
Concrete cone failure													
Factor according to	uncracked conci	rete	k _{ucr}	[-]				10),1				
CEN/TS1992-4-5	cracked conci	rete	k _{cr}	[-]				7	,2				
Splitting failure													
	h/h _{ef} ≥	2,0						1,0	h _{ef}				
Edge distance	2,0> h/h _{ef} >		cr,sp	[mm]			2	* h _{ef} (2,	5 – h / h	ef)			
	h/h _{ef} ≤				2,4 h _{ef}								
Spacing		S	cr,sp	[mm]				2 c	cr,sp				
Installation factor Compressed air cleanir	ng	$\gamma_2 = \gamma$	∤inst	[-]		1,0 (1,2) ¹⁾		1,2				
Installation factor Manual cleaning	•	$\gamma_2 = \gamma$	ỹinst	[-]	1,2				-				

¹⁾ Value in brackets for cracked concrete

Injection System VMH for concrete	
Performance Characteristic values of tension loads for threaded rods	Annex C2

Table C3: Characteristic values of **shear loads** for **threaded rods** under static, quasi-static action and seismic action C1 + C2

Threaded rod	hreaded rod			M10	M12	M16	M20	M24	M27	M30			
Steel failure without lever arm													
	$V_{Rk,s}$	[kN]	see Table C1										
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]	N] 0,70 • V _{Rk,s}										
	$V_{\text{Rk,s,C2}}$	[kN]	NF	PD	0,80 • V _{Rk,s}	No Performance Determined (NPI			IPD)				
Partial factor	γ _{Ms,V}	[-]				see Ta	able C1						
Steel failure with lever arm													
	$M^0_{\text{Rk},s}$	[Nm]				see Ta	able C1						
Characteristic bending moment	[Nm]												
	M ⁰ _{Rk,s,C2}	[Nm]	No Performance Determined (NPD)										
Partial factor	γ̃Ms,∨	[-]				see Ta	able C1						
Concrete pry-out failure													
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]				2	,0						
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0										
Concrete edge failure													
Effective length of anchor	I _f	[mm]				I _f = min(h	l _{ef} ; 8 d _{nom})						
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0						•				

Injection System VMH for concrete	
Performance Characteristic values of shear loads for threaded rods	Annex C3

Table C4: Characteristic values of **tension loads** for **internally threaded anchor rod** under static, quasi-static action

under	static, quasi-static	actic	on							
Internally threaded and	hor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure 1)										
Characteristic tension res	istance,	N _{Rk,s}	[kN]	10	18	29	42	79	123	
Steel, strength class 5.8		TTRK,S						, ,		
Partial factor		γMs,N	[-]		1,5					
	Characteristic tension resistance, Steel, strength class 8.8		[kN]	16	27	46	67	121	196	
Partial factor		γMs,N	[-]			1.	,5			
Characteristic tension res	istance.								4 0 4 3)	
Stainless steel A4 / HCR,		$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ³⁾	
Partial factor		γMs,N	[-]			1,87			2,86	
Combined pull-out and										
Characteristic bond res	istance in <u>uncracked</u> o	concre	te C20/25							
Temperature range I: 80°C / 50°C		τ _{Rk,ucr}	[N/mm ²]	17	16	15	14	13	13	
Temperature range II: 120°C / 72°C		$ au_{Rk,ucr}$	[N/mm ²]	14	14	13	12	12	11	
Temperature range III: 160°C / 100°C	Temperature range III:		[N/mm ²]	12	11	10	9,5	9,0	9,0	
Characteristic bond res	istance in <u>cracked</u> cor	icrete (C20/25							
Temperature range I: 80°C / 50°C		τ _{Rk,cr}	[N/mm²]	7,0	7,5	8,5	8,5	8,5	8,5	
Temperature range II: 120°C / 72°C	Temperature range II:		[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5	
Temperature range III: 160°C / 100°C		τ _{Rk,cr}	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	
			C25/30	1,02						
			C30/37	1,04						
Increasing factors for con	croto	l ,,,	C35/45		1,07					
lincreasing factors for con	Ciele	Ψc	C40/50		1,08					
			C45/55		1,09					
			C50/60			1,	10			
Factor according to	uncracked concrete	, L	r 1			10),1			
CEN/TS1992-4-5	cracked concrete	k ₈	[-]			7	,2			
Concrete cone failure										
Factor according to	uncracked concrete	k _{ucr}	[-]			10),1			
CEN/TS1992-4-5	cracked concrete	k _{cr}	[-]			7	,2			
Splitting failure										
, ,	h/h _{ef} ≥ 2,0					1.0	h _{ef}			
Edge distance	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	[mm]			2 * h _{ef} (2,				
	h/h _{ef} ≤ 1,3	- 01,00					h _{ef}			
Spacing			[mm]				cr,sp			
Installation factor Compressed air cleanin	ıg γ	$_2 = \gamma_{\text{inst}}$	[-]		1,0 (1,2) ²⁾ 1,2					
Installation factor Manual cleaning		$_2 = \gamma_{\text{inst}}$	[-]		1,2 -					
1) Fastening screws or thread	ed rods (incl. nut and wash	er) mus	t comply with	the approi	oriate mate	rial and prop	erty class o	of the interna	ally	

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Performance Characteristic values of tension loads for internally threaded anchor rod Annex C4

²⁾ Value in brackets for cracked concrete

³⁾ For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Table C5: Characteristic values of **shear loads** for **internally threaded anchor rod** under static and quasi-static action

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
-			10-111-0	10.111.0	10-111-10	10-111-12	10-111-10	10-111-20	
Steel failure without lever arm1)									
Characteristic shear resistance Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	61	
Partial factor	γ _{Ms,V}	[-]			1,	25			
Characteristic shear resistance Steel, strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98	
Partial factor	γ _{Ms,V}	[-]			1,	25			
Characteristic shear resistance Stainless steel A4 / HCR, strength class 70	$V_{Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾	
Partial factor	$\gamma_{Ms,V}$	[-]			1,56			2,38	
Steel failure with lever arm1)									
Characteristic bending moment, Steel, strength class 5.8	$M^0_{Rk,s}$	[Nm]	8	19	37	66	167	325	
Partial factor	γ _{Ms,V}	[-]			1,	25			
Characteristic bending moment, Steel, strength class 8.8	$M^0_{Rk,s}$	[Nm]	12	30	60	105	267	519	
Partial factor	γ _{Ms,V}	[-]			1,	25			
Characteristic bending moment, Stainless steel A4 / HCR, strength class 70	$M^0_{Rk,s}$	[Nm]	11	26	53	92	234	643 ²⁾	
Partial factor	γ _{Ms,V}	[-]			1,56			2,38	
Concrete pry-out failure									
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]	2,0						
Concrete edge failure									
Effective length of anchor	lf	[mm]			$I_f = min(h$	_{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30	
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0						

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Injection System VMH for concrete	
Performance Characteristic values of shear loads for internally threaded anchor rod	Annex C5

²⁾ For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Table C6: Characteristic values of tension loads for rebar under static, quasi-static action and seismic action C1

	Scionic action of											
Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension r	esistance N _{Rk,s} =	N _{Rk,s,C1}	[kN]				,	۹ _s • f _{uk} 1)			
Cross section area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]					1,4 ²⁾				
Combined pull-out an	d concrete failure											
Characteristic bond re	esistance in <u>uncrack</u> e	<u>ed</u> concr	ete C20/25	5								
Temperature range I: 80°C / 50°C		$ au_{Rk,ucr}$	[N/mm²]	14	14	14	14	13	13	13	13	13
Temperature range II: 120°C / 72°C	^τ Rk,ucr		[N/mm²]	13	12	12	12	12	11	11	11	11
Temperature range III: 160°C / 100°C		$ au_{Rk,ucr}$	[N/mm²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0
Characteristic bond re	esistance in <u>cracked</u>	concrete	C20/25									
Temperature range I: 80°C / 50°C	$\tau_{Rk,cr} = \tau_{Rk,C1}$		[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
Temperature range II: 120°C / 72°C	$\tau_{Rk,cr} = \tau_{Rk,C1}$		[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0
Temperature range III: 160°C / 100°C	$\tau_{Rk,cr} = \tau_{Rk,C1}$		[N/mm²]	4,0	4,5	4,5	5,0	5,5	6,0	6,0	5,5	6,5
		Ψс	C25/30	1,02								
			C30/37	1,04								
Increasing factor for co	norete		C35/45	1,07								
Increasing factor for co	norete		C40/50	1,08								
			C45/55	1,09								
			C50/60	1,10								
Factor according to	uncracked concrete	l.	r 1					10,1				
CEN/TS1992-4-5	cracked concrete	k ₈	[-]					7,2				
Concrete cone failure												
Factor according to	uncracked concrete	k _{ucr}	[-]					10,1				
CEN/TS1992-4-5	cracked concrete	k _{cr}	[-]					7,2				
Splitting failure												
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	[mm]					(2,5 –				
	h/h _{ef} ≤ 1,3							2,4 h _{ef}				
Spacing		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation factor Compressed air clean	ing	$\gamma_2 = \gamma_{\text{inst}}$	[-]	1,0 (1,2) ³⁾ 1,2								
Installation factor Manual cleaning		$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,2					•	

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars 2) in absence of nation regulation 3) Value in brackets for cracked concrete

Injection System VMH for concrete	
Performance Characteristic values of tension loads for rebar	Annex C6

Table C7: Characteristic values of shear loads for rebar under static, quasi-static action and seismic action C1

							ı					
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic shear resistance	$V_{Rk,s}$	[kN]	$0.50 \cdot A_s \cdot f_{uk}^{1)}$									
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]	0,37 • A _s • f _{uk} ¹⁾									
Cross section area	A_s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾					
Ductility factor according to CEN/TS 1992-4-5	k ₂	[-]					0,8					
Steel failure with lever arm												
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]	1,2 • W _{el} • f _{uk} 1)									
	$M^0_{Rk,s,C1}$	[Nm]	No Performance Determined (NPD)									
Elastic section modulus	W_{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217	
Partial factor	γMs,∨	[-]					1,5 ²⁾					
Concrete pry-out failure												
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]					2,0					
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0					
Concrete edge failure												
Effective length of rebar	I _f	[mm]				I _f = m	nin(h _{ef} ; 8	d _{nom})				
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32	
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0									

 $^{^{1)}}f_{\text{uk}}\,\text{shall}$ be taken from the specifications of reinforcing bars $^{2)}$ in absence of nation regulation

Injection System VMH for concrete	
Performance Characteristic values of shear loads for rebar	Annex C7

Table C8:	Displacements under tension loads ¹⁾ (threaded rod)
Table C8:	Displacements under tension loads" (threaded roo	l

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete C	20/25 under	static and qua	si-static a	action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C / 50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C / 72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete C20)/25 under st	atic and quasi-	static act	ion						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C / 50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C / 72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424
Cracked concrete C20)/25 under se	eismic action (C	(2)							
	_{is (DLS)} -factor	s (DLS) -factor [mm/(N/mm²)]		(1155)		No Deuteurseurse Deteursies d'AIDD\				DD)
temperature ———	s (ULS) -factor	[mm/(N/mm²)]	(NPD)		0,140	No Performance Determined (NPD)				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \quad \cdot \ \tau; \\ \delta_{\text{N,seis}(\text{DLS})} = \delta_{\text{N,seis}(\text{DLS})} - \text{factor} \quad \cdot \ \tau; \\ \tau : \text{acting bond stress for tension}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{- factor } \cdot \tau; \qquad \qquad \delta_{N,seis(ULS)} = \delta_{N,seis(ULS)} \text{-factor } \cdot \tau;$

Table C9: Displacements under shear load (threaded rod)

i ,											
Threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Uncracked and cracked concrete C20/25 under static and quasi-static action											
All temperature ranges		δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	iges -	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete	C20/	25 under se	ismic action (C	2)							
temperature ———	$\delta_{\text{V,seis}}$	(DLS) -factor	[mm/(kN)]	(NPD)		0,27	No Porformance Determined (NDD)				DD)
	$\delta_{V,seis}$	(ULS) -factor	[mm/(kN)]			0,27	No Performance Determined (NPD)				

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor} \quad V; \qquad \qquad \delta_{V,seis(DLS)} = \delta_{V,seis(DLS)} \text{- factor} \quad V; \qquad \qquad V: \text{ acting shear load}$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor} \quad V; \qquad \qquad \delta_{V,seis(ULS)} = \delta_{V,seis(ULS)} \text{- factor} \quad V;$

Injection System VMH for concrete

Performance

Displacements (threaded rod)

Annex C8

Table C10: Displacements under tension load¹⁾ (internally threaded anchor rod)

Internally threaded anch	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Uncracked concrete C20	0/25 under s	tatic and quasi	-static actio	on				
Temperature range I: 80°C / 50°C	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C / 72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete C20/2	5 under stat	ic and quasi-st	atic action					
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C / 50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,107	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C / 72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor } \cdot \tau; \qquad \qquad \tau\text{: acting bond stress for tension}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Table C11: Displacements under shear load (internally threaded anchor rod)

Internally threaded anchor rod			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked and cracked co	oncrete C20	/25 under sta	tic and qua	si-static act	ion			
All tomporature renges	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
All temperature ranges	δ _{V∞} -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor } \cdot V; \hspace{1cm} V: \text{acting shear load}$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor $\cdot V$;

Injection System VMH for concrete	
Performance Displacements (internally threaded anchor rod)	Annex C9

Table C12: Displacements under tension load (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25 under static and quasi-static action											
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048
80°C / 50°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,063
Temperature range II:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,050
120°C / 72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,065
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,186
160°C / 100°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,192
Cracked concrete C20/2	25 under sta	tic and quasi-s	tatic act	ion							
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,108
80°C / 50°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,141
Temperature range II:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,113
120°C / 72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,148
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,425
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$;

Table C13: Displacements under shear load (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Cracked and uncracked concrete C20/25 under static and quasi-static action											
All tomporature ranges	$\delta_{\text{V0}}\text{-factor}$	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
All temperature ranges -	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Injection System VMH for concrete

Performance

Displacements (rebar)

Annex C10