

DECLARATION OF PERFORMANCE

DoP Nr.: MKT-341 - en

♦ Unique identification code of product-type: Injecti

Injection System VMH for concrete

♦ Intended use/es:

Injection system for use in concrete, see Annex B

♦ Manufacturer:

MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

♦ System/s of AVCP:

1

♦ European Assessment Document:

EAD 330499-01-0601

European Technical Assessment:

ETA-17/0716, 06.12.2018

Technical Assessment Body:

DIBt, Berlin

Notified body/ies:

NB 1343 – MPA, Darmstadt

♦ Declared performance/s:

Essential characteristics	Performance				
Mechanical resistance and stability (BWR1)					
Characteristic resistance to tension load (static and quasi-static loading)	Annex C1, C3, C5, C7				
Characteristic resistance to shear load (static and quasi-static loading)	Annex C2, C4, C6, C8				
Displacements (static and quasi-static loading)	Annex C9 – C11				
Characteristic resistance for seismic performance category C1	Annex C3, C4, C7, C8				
Characteristic resistance and displacements for seismic performance category C2	Annex C3, C4, C9				
Hygiene, health and the environment (BWR3)					
Content, emission and/or release of dangerous substances	NPD (No Performance Determined)				

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Stefan Weustenhagen (General manager)

Weilerbach, 06.12.2018

Dipl.-Ing. Detlef Bigalke

(Head of product development)

The original of this declaration of performance was written in German. In the event of deviations in the translation, the German version shall be valid.

Specification of intended use

Injection System VMH	Threaded rod	Internally threaded anchor rod	Rebar			
Static or quasi-static action	M8 - M30 zinc plated, A2, A4, HCR	VMU-IG M6 - VMU-IG M20 electroplated, A4, HCR	Ø8 - Ø32			
Seismic action, category C1	M8 - M30 zinc plated ¹⁾ , A4, HCR	-	Ø8 - Ø32			
Seismic action, category C2	M12 – M24 zinc plated ¹⁾ (property class 8.8) A4, HCR (poperty class ≥ 70)	le				
Base materials	compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013 Strength classes acc. to EN 206:2013: C20/25 to C50/60					
	Cracked or uncracked concrete					
Temperature Range -40 °C to +80 °C	max. long term temperature +50	0 °C and max. short term	temperature +80 °C			
Temperature Range II -40 °C to +120 °C	max. long term temperature +73	2 °C and max. short term	temperature +120 °C			
Temperature Range III -40 °C to +160 °C	max. long term temperature +10	0 °C and max. short term	n temperature +160 °C			

¹⁾ except hot-dip galvanised

Use conditions (Environmental conditions):

Structures subject to dry internal conditions	zinc plated steel, stainless steel A2 or A4 high corrosion resistant steel HCR
Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist	stainless steel A4 high corrosion resistant steel HCR
Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist ²⁾	high corrosion resistant steel HCR

²⁾ Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the
 anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-4:2018 or Technical Report TR 055

Installation:

- Dry or wet concrete or waterfilled boreholes (not seawater)
- Hole drilling by hammer or compressed air drill or vacuum drill mode
- Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Injection System VMH for concrete	
Intended Use Specifications	Annex B1

Table B1: Installation parameters for threaded rods

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of thread	ded rod	d=d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole		do	[mm]	10	12	14	18	22	28	30	35
Effective anchorage	ao donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Ellective anchoraç	ge depui	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in	Pre-setting installation	d _f ≤	[mm]	9	12	14	18	22	26	30	33
the fixture ¹⁾	Through setting installation	d _f ≤	[mm]	12	14	16	20	24	30	33	40
Installation torque T _{inst} ≤		T _{inst} ≤	[Nm]	10	20	40 (35) ²⁾	60	100	170	250	300
Minimum thicknes	nimum thickness of member h _{min} [mm]			+ 30 m 100 mr				h _{ef} + 2d _c	İ		
Minimum spacing s _{min} [mm]		40	50	60	75	95	115	125	140		
Minimum edge dis	stance	C _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ For applications under seismic loading the diameter of clearance hole in the fixture shall be at maximum dnem + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar ²⁾ Installation torque for M12 with steel grade 4.6

Installation parameters for internally threaded anchor rods Table B2:

Internally threaded anchor roo	d		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ¹⁾	d=d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective enghances don't	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective anchorage depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	l _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀					
Minimum spacing	Smin	[mm]	50	60	75	95	115	140
Minimum edge distance	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of rebar	d=d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	do	[mm]	12	14	16	18	20	25	32	32	35	40
Effective anchorage depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Effective anchorage depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀							
Minimum spacing	S _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	C _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

Injection	System	VMH for	concrete
-----------	--------	---------	----------

Intended use

Installation parameters

Annex B2

Table B4: Parameter cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit	Brush Ø	min. Brush Ø		Retainin	ıg washer			
	E CONTRACTOR OF THE CONTRACTOR	999999999	=	HHHHHH	Hama quanta		Installatio	on direction	and use		
[-]	[-]	Ø [mm]	d₀ [mm]	d ь [mm]	d _{b,min} [mm]	[-]	1	→	1		
M8			10	11,5	10,5		110				
M10	VMU-IG M 6	8	12	13,5	12,5	No.	Name and the same				
M12	VMU-IG M 8	10	14	15,5	14,5	No retaining washer required					
		12	16	17,5	16,5						
M16	VMU-IG M10	14	18	20,0	18,5	VM-IA 18					
		16	20	22,0	20,5	VM-IA 20					
M20	VMU-IG M12		22	24,0	22,5	VM-IA 22					
		20	25	27,0	25,5	VM-IA 25					
M24	VMU-IG M16		28	30,0	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all		
M27			30	31,8	30,5	VM-IA 30	IA 30				
		24/25	32	34,0	32,5	VM-IA 32	1				
M30	VMU-IG M20	28	35	37,0	35,5	VM-IA 35					
		32	40	43,5	40,5	VM-IA 40					

Blow-out pump (volume 750ml)

Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h₀): ≤ 10 d_{nom} for uncracked concrete

Recommended compressed air tool (min 6 bar)

Drill bit diameter (do): all diameters

Retaining washer

Drill bit diameter (d₀): 18 mm to 40 mm

d_b

Steel brush

Drill bit diameter (do): all diameters

Injection System VMH for concrete

Intended Use

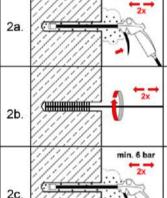
Cleaning and setting tools

Annex B3

Installation Instructions

Drilling of the hole

1.


Drill with hammer drill or compressed air drill or vacuum drill a hole into the base material to the size required by the selected anchor (Table B1, B2 or B3), In case of aborted drill hole, the drill hole shall be filled with mortar.

Cleaning

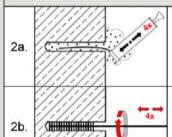
Attention! Standing water in the bore hole must be removed before cleaning!

Cleaning with compressed air

Cracked and uncracked concrete, all diameters min. 6 bar

Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) a minimum of two times until return air stream is free of noticeable

If the bore hole ground is not reached, an extension must be used.


Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush ≥ d_{b min} (Table B4) a minimum of two times.

If the bore hole ground is not reached with the brush, an appropriate brush extension must be used

Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) again a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension must be used.

Manual cleaning 2.

Drill hole diameter d₀ ≤ 20mm and drill hole depth h₀ ≤ 10 d_{nom} (uncracked concrete only)

Starting from the bottom or back of the bore hole, blow out the hole with the blow-out pump a minimum of four times.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush ≥ d_{b.min} (Table B4) a minimum of four times. If the bore hole ground is not reached with the brush, an appropriate brush extension must be used.

2c. of four times.

Starting from the bottom or back of the bore hole blow out the hole again a minimum

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Injection System VMH for concrete

Intended Use Installation instructions

Annex B4

Installation instructions (continuation)

Inje	ection	
3.	Will 3	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.
4.	her	Prior to inserting the rod into the filled bore hole, the position of the embedment depth shall be marked on the threaded rod or rebar
5.	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.
6a.		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. If the bore hole ground is not reached, an appropriate extension nozzle shall be used. Observe working times given in Table B5.
6b.		Retaining washer and mixer nozzle extensions shall be used according to Table B4 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and anchorage depth hef > 250mm • Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Injection S	System	VMH:	for	concrete
-------------	--------	------	-----	----------

Installation instructions (continuation)

Inse	rting the anchor	
7.	*	Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.
8.		Make sure that excess mortar is visible at the top of the hole. If these requirements are not maintained, repeat application before end of working time! For overhead installation, the anchor should be fixed (e.g. by wedges).
9.		Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).
10.		Remove excess mortar.
11.	T _{INST}	The fixture can be mounted after curing time. Apply installation torque T_{inst} according to Table B1 or B2.
12.		Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Table B5: Working time and curing time

Ct			Marking Missa	Minimum curing time				
Concrete	e ten	nperature	Working time	dry concrete	wet concrete			
-5°C	to	-1°C	50 min	5 h	10 h			
0°C	to	+4°C	25 min	3,5 h	7 h			
+5°C	to	+9°C	15 min	2 h	4 h			
+10°C	to	+14°C	10 min	1 h	2 h			
+15°C	to	+19°C	6 min	40 min	80 min			
+20°C	to	+29°C	3 min	30 min	60 min			
+30°C	to	+40°C	2 min	30 min	60 min			
Cartridge	e ten	nperature		+ 5°C to + 40°C				

Injection System VMH for concrete	
Intended Use Installation instructions (continuation) Working and curing time	Annex B6

Table C1: Characteristic steel resistance for threaded rods under tension load

Thread	led rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ailure ¹⁾										
Cross s	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Charac	teristic resistance under tension	load									
inc	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Ste	Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Stainless steel	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
	A2, A4 and HCR Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
Stair	A4 and HCR Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	-	-
Partial	factor										
eq	Property class 4.6	γms,N	[-]				2	,0			
plat	Property class 4.8	γms,N	[-]				1	,5			
zinc	Property class 5.6	γ _{Ms,N}	[-]				2	,0			
Steel, zinc plated	Property class 5.8	γ _{Ms,N}	[-]				1	,5			
Š	Property class 8.8	үмs,N	[-]				1	,5			
steel	A2, A4 and HCR Property class 50	γMs,N	[-]				2,	86		w.	
Stainless steel	A2, A4 and HCR Property class 70	үмs,N	[-]	1,87						-	-
Stair	A4 and HCR Property class 80	γMs,N	[-]			1	,6			•	-

The characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

Injection System VMH for concrete

Table C2: Characteristic steel resistance for threaded rods under shear load

Threade	ed rod			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel fai	ilure										
Cross se	ectional area	As	[mm²]	36,5	58,0	84,3	157	245	353	459	561
Charact	eristic resistances under shear load 1)	6			201	.co	di.				
Steel fai	ilure <u>without</u> lever arm										
ဥ	Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	9 (8)	15 (13)	21	39	61	88	115	140
Ste	Property class 8.8	V ⁰ _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
S	A2, A4 and HCR, Property class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
St	A4 and HCR, Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	-	-
Steel fai	ilure <u>with</u> lever arm				\$1		7				
2	Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Ste	Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
S	A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Stainless steel	A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	i - 2	:=::::
Ste	A4 and HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	40
Partial fa	actor										
	Property class 4.6	γMs,∨	[-]				1,	67			
te	Property class 4.8	γMs,∨	[-]				1,	25			
Steel, zinc plated	Property class 5.6	γ _{Ms,V}	[-]				1,	67			
zinc	Property class 5.8	γ̃Ms,∨	[-]				1,	25			
	Property class 8.8	γ̃Ms,∨	[-]				1,	25			
SS	A2, A4 and HCR, Property class 50	γ̃Ms,∨	[-]				2,	38			00
Stainless steel	A2, A4 and HCR, Property class 70	γ̃Ms,∨	[-]			1	,56			-	
S	A4 and HCR, Property class 80	γ _{Ms,V}	[-]			1	,33			-	14

The characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid

Injection S	System	VMH for	concrete
-------------	--------	---------	----------

Performance

Characteristic values for threaded rods under shear loads

Table C3: Characteristic values of **tension loads** for **threaded rods** under static, quasi-static action and seismic action C1 + C2

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure												
		$N_{Rk,s}$	[kN]			C		· f _{uk} able C	1			
Characteristic resistant	ce N	Rk,s,eq,C1	[kN]	1,0 · N _{Rk,s}								
		Rk,s,eq,C2	[kN]	NPA 1,0 • N _{Rk,s}						NPA		
Partial factor		γMs,N	[-]				see Ta	ble C1				
Combined pull-out an	d concrete failure											
Characteristic bond r	esistance in <u>uncrack</u> e	ed conc	rete C20	/25		v 10		· 20	. 10	. 00		
Temperature range I: 80°C / 50°C		$ au_{Rk,ucr}$	[N/mm²]	17	17	16	15	14	13	13	13	
Temperature range II: 120°C / 72°C		τ _{Rk,ucr}	[N/mm²]	15	14	14	13	12	12	11	11	
Temperature range III: 160°C / 100°C		$\tau_{Rk,ucr}$	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,0	
Characteristic bond r	esistance in <u>cracked</u>	concre	te C20/25	5								
Temperature range I:		Turindia.	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
80°C / 50°C			[N/mm²]		PA	3,6	3,5	3,3	2,3	NF	PA	
Temperature range II:	$\tau_{Rk,cr} = 0$	T _{Rk, eq} C1	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
120°C / 72°C		T _{Rk, eq} C2	[N/mm²]	107532	PA	3,1	3,0	2,8	2,0		PΑ	
Temperature range III:		, m, eq e,	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
160°C / 100°C		T _{Rk, eq C2}	[N/mm²]							PA		
			C25/30	1,02								
			C30/37	1,04								
Increasing factors for c	oncrete	$\Psi_{\mathbf{c}}$	C35/45					07				
			C40/50					80				
			C45/55 C50/60					09				
			C50/60				1,	10				
Concrete cone failure	2 2 2	-										
Factor k ₁ ——	uncracked concrete	k _{ucr,N}	[-]				10.741	,0 ,7				
Splitting failure	Clacked colliciete	k _{cr,N}	[-]				,					
Spiriting landle	h/h _{ef} ≥ 2,0	1	l I				1.0	h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2	- 10110	''ef 5 — h / h	1.6)			
490 410141100	$\frac{2,0.5 \text{ h/h}{\text{ef}} > 1,3}{\text{h/h}_{\text{ef}} \le 1,3}$	~cr,sp	[]				0.000.000	h _{ef}	er/			
Spacing	10 Tel = 1,0	S _{cr,sp}	[mm]					cr,sp				
Installation factor		quiap										
Compressed air	dry or wet concre	te γ _{inst}	[-]				1	,0				
cleaning	water filled bore ho				1,4							
Manual cleaning	Checker with the contract of t				1,4 1,2 NPA							

Injection System	VMH for concrete	
Performance		

Table C4: Characteristic values of shear loads for threaded rods under static, quasi-static action and seismic action C1 + C2

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure with	iout lever an	m									<u> </u>		
	_	V ⁰ Rk,s ¹⁾	[kN]	N] 0,5 • A _s • f _{uk} or see Table C2									
Characteristic she resistance	ear	$V_{\rm Rk,s,eq,C1}$	[kN]	0,70 • V ⁰ _{Rk,s}									
		$V_{Rk,s,eq,C2}$	[kN]	NPA		0,70 • V ⁰ _{Rk,s}				NPA			
Ductility factor		[-]				1	,0						
Partial factor		[-]				see Ta	able C2						
Steel failure with	lever arm												
	[Nm]	1,2 • W _{el} • f _{uk} or see Table C2											
Characteristic ber resistance	Characteristic bending resistance		[Nm]	No Performance Assessed (NPA)									
		$M^0_{ \text{Rk,s,eq,C2}}$	[Nm]	No Periormance Assessed (NPA)									
Partial factor		γms,v	[-]	see Table C2									
Concrete pry-ou	t failure												
Pry-out factor		k ₈	[-]				2	,0					
Concrete edge fa	ailure	.11											
Effective length o	f anchor	I _f	[mm]			min (h _{ef}	12 d _{nom})			A	nin 00mm)		
Outside diameter	of anchor	d_{nom}	[mm]	8	10	12	16	20	24	27	30		
	ithout annula op filling	α_{gap}	[-]	0,5									
annular gap w	ith annular ga ing	ap α _{gap}	[-]] 1,0									
Installation factor		Yinst	[-]				1	,0					

¹⁾ For property class 4.6 and 4.8: $V_{Rk,s}^0 = 0.6 \cdot A_s \cdot f_{uk}$

Injection	System	VMH	for	concrete
,	-,			

Characteristic values of shear loads for threaded rods

Table C5: Characteristic values of tension loads for internally threaded anchor rod under static, quasi-static action

Internally threaded a	nchor	rod			VMU-IG	VMU-IG	VMU-IG	VMU-IG	VMU-IG	VMU-IG		
5.	iliciloi	100			M 6	M 8	M 10	M 12	M 16	M 20		
Steel failure 1)			11				·	pic .	,			
Characteristic tension		nce,	$N_{Rk,s}$	[kN]	10	18	29	42	79	123		
Steel, property class 5	.8			1700000	3352	1,5						
Partial factor Characteristic tension	recieta	ince	γMs,N	[-]		1,5						
Steel, property class 8		ince,	$N_{Rk,s}$	[kN]	16	27	46	67	121	196		
Partial factor			γMs,N	[-]			1	5				
Characteristic tension	resista	nce,			14							
Stainless steel A4 / H0	CR, pro	perty class 70	$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ²⁾		
Partial factor		10	γMs,N	[-]			1,87			2,86		
Combined pull-out a					COLUMN TO THE CO							
Characteristic bond	resista	ince in <u>uncrack</u>	<u>ed</u> cond	rete C20/	25							
	l;	80°C / 50°C	T _{Rk,ucr}	[N/mm²]	17	16	15	14	13	13		
Temperature range	H:	120°C / 72°C	T _{Rk,ucr}	[N/mm²]	14	14	13	12	12	11		
	111:	160°C / 100°C	T _{Rk,ucr}	[N/mm²]	11	11	10	9,5	9,0	9,0		
Characteristic bond	resista	nce in <u>cracked</u>	concre	te C20/25								
	l:	80°C / 50°C	$\tau_{Rk,cr}$	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0		
Temperature range	II:	120°C / 72°C	$\tau_{Rk,cr}$	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0		
	III:	160°C / 100°C	τ _{Rk,cr}	[N/mm²]	5,5	6,0	6,5	6,0	5,5	5,5		
				C25/30			1,	02				
				C30/37	1,04							
Increasing factors for	concre	te	Ψc	C35/45		1,07						
			70	C40/50				80				
				C45/55 C50/60	0			09 10				
Concrete cone failure	٥.			C30/60			- 11	10				
		acked concrete	k _{ucr,N}	[-]			11	,0				
Factor k ₁ -	7,60,00,000	acked concrete	k _{cr,N}	[-]				,7				
Splitting failure					V/-		210					
- 1550 -		h/h _{ef} ≥ 2,0					1,0	h _{ef}				
Edge distance		2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2 · h _{ef} (2,					
		h/h _{ef} ≤ 1,3	2.000 m					h _{ef}				
Spacing			S _{cr,sp}	[mm]			10000000	cr,sp				
Installation factor												
Compressed air	dry	or wet concrete	γinst	[-]			1	,0				
cleaning	wate	erfilled borehole	γinst	[-]	1,4							
Manual cleaning	dry	or wet concrete	Yinst	[-]		1,2			NPA			

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

²⁾ For VMU-IG M20: property class 50

Injection System VMH for concrete	
Porformanco	

Table C6: Characteristic values of shear loads for internally threaded anchor rod under static and quasi-static action

Intern	nally threaded anchor rod			VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20	
Steel	failure without lever arm1)								112	
ည	Characteristic resistance, property class 5.8	$V^0_{Rk,s}$	[kN]	5	9	15	21	39	61	
eel, zin plated	Partial factor	γ̃Ms,∨	[-]				93-			
Steel, zinc plated	Characteristic resistance, property class 8.8	$V^0_{Rk,s}$	[kN]	8	14	23	34	60	98	
	Partial factor	[-]		a	1,	25				
Stainless steel	Characteristic resistance A4 / HCR, property class 70	$V^0_{Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾	
S	Partial factor	γ̃Ms,∨	[-]			2,38				
Ductil	ity factor	k ₇	[-]			1	,0			
Steel	failure with lever arm1)									
	Characteristic bending moment, property class 5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325	
c p	Partial factor	γ̃Ms,∨	[-]		1,25					
Steel, zinc plated	Characteristic bending moment, property class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519	
190 %	Partial factor	γ̃Ms,∨	[-]			01				
Stainless steel	Characteristic bending moment, A4 / HCR, property class 70	M ⁰ _{Rk,s}	[Nm]	11	26	53	92	234	643 ²⁾	
0)	Partial factor	γ̃Ms,∨	[-]			1,56			2,38	
Conc	rete pry-out failure									
Pry-o	ut factor	k ₈	[-]			2	,0			
Conc	rete edge failure	***								
Effect	ive length of anchor	l _f	[mm]		m	in (h _{ef} ;12 d _n	om)		min (h _{ef} ; 300mm)	
Outsid	de diameter of anchor	d_{nom}	[mm]	10	12	16	20	24	30	
Install	ation factor	γinst	[-]			1	,0			

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod (exception: VMU-IG M20). The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

²⁾ For VMU-IG M20: Internally threaded rod: property class 50; Fastening screws or threaded rods (incl. nut and washer): property class 70

Injection System VMH for concrete	
Performance Characteristic values of shear loads for internally threaded anchor rod	Annex C6

Table C7: Characteristic values of tension loads for rebar under static, quasi-static action and seismic action C1

				-										
Reinforcing bar					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure														
Characteristic tens	sion re	esistance	$N_{Rk,s} = N_{Rk,s,eq,C1}$	[kN]	$A_s \cdot f_{uk}^{(1)}$									
Cross sectional ar	rea		A_s	[mm²]								804		
Partial factor	YMs,N	[-]	1,42)											
Combined pull-or	ut and	d concrete failu	re											
Characteristic bo	ond re	sistance in <u>unc</u>	racked o	oncrete C	20/25	5								
	I:	80°C / 50°C	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Temperature range .	11:	120°C / 72°C	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	13	12	12	12	12	11	11	11	11	11
	III: 160°C / 100°C τ _{Rk,ucr}				9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Characteristic bo	ond re	sistance in <u>cra</u>	cked con	crete C20	/25									
	I:	80°C / 50°C	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range	II:	120°C / 72°C	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
	III: 160°C / 100°C		$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
				C25/30					1,	02				
				C30/37					1,	04				
la ana a ina farita f				C35/45					1,	07				
Increasing factor for	or cor	icrete	Ψc	C40/50					1,	08				
				C45/55					1,	09				
				C50/60	1,10									
Concrete cone fa	ilure													
Factor k ₁	unci	racked concrete	k _{ucr,N}	[-]					11	1,0				
90	c	cracked concrete	k _{cr,N}	[-]					7	,7				
Splitting failure														
2202 - 74027		h/h _{ef} ≥ 2,0	_	2000-200				-		h _{ef}	- No			
Edge distance	-	2,0> h/h _{ef} > 1,3		[mm]				2 ·	h _{ef} (2,		h _{ef})			
h/h _{ef} ≤ 1,3 Spacing s _{cr,sp}				20 2						h _{ef}				
Spacing	[mm]					2 c	cr,sp							
Installation facto	-		T						24	120				
Compressed air dry or wet concrete γ_{inst}				4,900						,0				i-
cleaning	wa	terfilled borehole	γinst	[-]	1,4									
Manual cleaning	dry	or wet concrete	γinst	[-]			1,2					NPA		

 $^{^{1)}}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System VMH for concrete

Characteristic values of tension loads for rebar

Table C8: Characteristic values of shear loads for rebar under static, quasi-static action and seismic action C1

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Steel failure without lever a	m													
Characteristic shear	$V^0_{Rk,s}$	[kN]	0,50 • A _s • f _{uk} ¹⁾											
resistance	$V_{Rk,s,eq,C1}$	[kN]	0,37 • A _s • f _{uk} ¹⁾											
Cross sectional area	As	[mm²]	50	79	113	154	201	314	452	491	616	804		
Partial factor	actor γ _{Ms,V} [-]						1,	5 ²⁾						
Ductility factor	k ₇	[-]	1,0											
Steel failure with lever arm														
Characteristic bending M ⁰ _{Rk,s} [Nm]				1,2 • W _{el} • f _{uk} 1)										
resistance	[Nm]	No Performance Assessed (NPA)												
Elastic section modulus	resistance $M^0_{Rk,s,eq,C1}$ Elastic section modulus W_{el} [170	269	402	785	896	1534	2155	3217		
Partial factor	γMs,V	[-]	1,5 ²⁾											
Concrete pry-out failure			t.											
Pry-out Factor	k ₈	[-]					2	,0						
Concrete edge failure														
Effective length of rebar	l _f	[mm]			min	(h _{ef} ;12	d _{nom})			min ((h _{ef} ; 300	mm)		
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32		
without annul Factor for gap filling	0,5													
annular gap with annular g	[-]	1,0												
Installation factor	1,0													

 $[\]overset{1)}{f}_{uk}$ shall be taken from the specifications of reinforcing bars $\overset{2)}{}$ in absence of national regulation

Characteristic values of shear loads for rebar

Table C9: Displacements under tension load¹⁾ (threaded rod)

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concre	ete C20/25 und	er static and q	uasi-sta	tic action	1	NO.	100			
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
I: 80°C / 50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
II: 120°C / 72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range δ_{N0} -factor		[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
III: 160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete	C20/25 under	static and qua	si-static	action						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
I: 80°C / 50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
II: 120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
III: 160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424
Cracked concrete	C20/25 under	seismic action	(C2)							
All	$\delta_{N,eq\;(DLS)}$ -factor	eq (DLS) -factor [mm/(N/mm²)]		0.4	0,120	0,100	0,100	0,120	N/	D.4
temperature — δ	N, eq (ULS) -factor	[mm/(N/mm²)]	INF	PA	0,140	0,150	0,110	0,150	INI	PA

¹⁾ Calculation of the displacement

 $\begin{array}{ll} \delta_{\text{N0}} = \delta_{\text{N0}\text{-}} \ \text{factor} \ \cdot \tau_{\text{Ed}}; & \delta_{\text{N,eq(DLS)}} = \delta_{\text{N,eq(DLS)}\text{-}} \text{factor} \ \cdot \tau_{\text{Ed}}; \\ \delta_{\text{N,eq(ULS)}} = \delta_{\text{N,eq(ULS)}\text{-}} \text{factor} \ \cdot \tau_{\text{Ed}}; & \delta_{\text{N,eq(ULS)}\text{-}} \text{factor} \ \cdot \tau_{\text{Ed}}; \end{array}$

 $\delta_{N,eq(DLS)} = \delta_{N,eq(DLS)} \text{-factor } \cdot \tau_{\text{Ed}}; \qquad \tau_{\text{Ed}} \text{: acting bond stress for tension}$

Table C10: Displacements under shear load¹⁾ (threaded rod)

Threaded rod	M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30				
Uncracked and cracked concrete C20/25 under static and quasi-static action												
All temperature	$\delta_{ee o}$ -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
ranges	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		
Cracked concr	ete C20/25 under s	seismic action	ı (C2)									
All	$\delta_{V,eq(DLS)}$ -factor	actor [mm/(kN)]		٦,٨	0,27	0,13	0,09	0,06	NI NI	٦,٨		
temperature ranges	δ _{V,eq(ULS)} -factor	[mm/(kN)]	NPA		0,27	0,14	0,10	0,08		PA		

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V_{\text{Ed}}; \qquad \qquad \delta_{V,\text{eq(DLS)}} = \delta_{V,\text{eq(DLS)}}\text{-factor} \cdot V_{\text{Ed}};$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor \cdot V_{Ed} ; $\delta_{V,eq(ULS)} = \delta_{V,eq(ULS)}$ - factor \cdot V_{Ed} ;

V_{Ed}: acting shear load

Injection System VMH for concrete

Performance

Displacements (threaded rod)

Table C11: Displacements under tension load¹⁾ (internally threaded anchor rod)

Internally threaded and	hor rod		VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20
Uncracked concrete C	20/25 under	static and qua	asi-static a	ction				
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C / 50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C / 72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range III: 160°C / 100°C	δ _{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179
	δ _{N∞} -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete C20/	25 under st	atic and quasi	-static acti	on				
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C / 50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,107	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C / 72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau_{\text{Ed}};$

 τ_{Ed} : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau_{Ed}$;

Table C12: Displacements under shear load (internally threaded anchor rod)

Internally threaded and	VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20						
Uncracked and cracked concrete C20/25 under static and quasi-static action												
All	δ _{v0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04				
All temperature ranges	δ _{√∞} -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06				

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V_{Ed}$;

V_{Ed}: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V_{Ed}$;

Injection System VMH for concrete

Performance

Displacements (internally threaded anchor rod)

Table C13: Displacements under tension load¹⁾ (rebar)

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked concrete	C20/25 un	der static and	quasi-	static a	ction							
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
I: 80°C / 50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
II: 120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concrete C	20/25 unde	r static and qu	uasi-sta	atic act	ion							
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
I: 80°C / 50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
II: 120°C / 72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
III: 160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau_{Ed}$; τ_{Ed}: acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau_{Ed}$;

Table C14: Displacements under shear load¹⁾ (rebar)

Rebar	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Cracked and uncracked concrete C20/25 under static and quasi-static action												
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

V_{Ed}: acting shear load $\delta_{V0} = \delta_{V0}$ -factor $\cdot V_{Ed}$;

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V_{Ed}$;

Injection System VMH for concrete

Performance

Displacements (rebar)