

DECLARATIA DE PERFORMANTĂ

DoP Nr.: MKT-540 - ro

♦ Cod unic de identificare al produsului-tip: Sistem de injectare VMH pentru retehnologizarea

conexiunii de oțel

♦ Utilizare (utilizări) preconizată (preconizate): Sistem de injectare pentru retehnologizarea conexiunii de

oțel / Annex B

♦ Fabricant: MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

 Sistemul (sistemele) de evaluare şi de verificare a constanței performanței:

1

♦ Documentul de evaluare european: EAD 330087-00-0601

Evaluarea tehnică europeană: ETA-17/0715, 18.07.2018

Organismul de evaluare tehnică: DIBt, Berlin

Organism (organisme) notificat(e): NB 1343 – MPA, Darmstadt

→ Performanţa (performanţe) declarată (declarate):

Caracteristici esențiale	Performanţă		
Rezistență mecanică și stabilitate (BWR1)			
Rezistențe caracteristice pentru sarcini statice și cvasistatice	Anexa/Annex C1		
Securitatea la incendiu (BWR2)			
Comportamentul la foc	Clasa A1		
Rezistență la foc	Anexa/Annex C2 – C3		

Performanța produsului identificat mai sus este în conformitate cu setul de performanțe declarate. Această declarație de performanță este eliberată în conformitate cu Regulamentul (UE) nr. 305/2011, pe răspunderea exclusivă a fabricantului identificat mai sus.

Semnată pentru si în numele fabricantului de către:

Stefan Weustenhagen

(Director general)

Weilerbach, 18.07.2018

Dipl.-løg. Detlef Bigalke

(Sef de dezvoltare a produselor)

Originalul acestei declarații de performanță a fost scris în limba germană. În cazul abaterilor în traducere, versiunea germană este validă.

Specifications of intended use

Anchorages subject to:

Rebar	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø22	Ø24	Ø 25	Ø28	Ø32
Static or quasi static action	✓										
Fire exposure	✓										

Tension anchor ZA	M12 M16 M20 M2				
Static or quasi static action	√				
Fire exposure	✓				

Base material:

- Reinforced or unreinforced normal weight concrete acc. to EN 206-1:2000
- Strength classes C12/15 to C50/60 acc. to EN 206-1:2000
- Maximum chloride concrete of 0,40 % (CL 0,40) related to the cement content acc. to EN 206-1:2000
- Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of \emptyset + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature range:

- 40 °C to +80 °C (max. short term temperature +80 °C and max. long term temperature +50 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

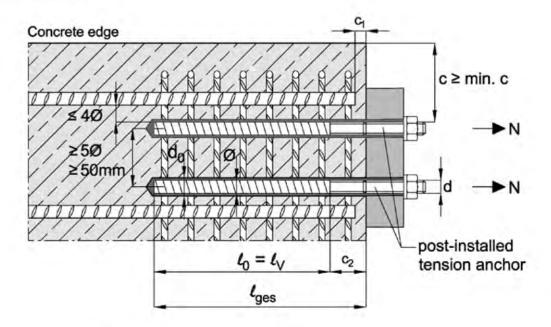
Injection System VHM for rebar connections	
Intended use Specifications of intended use	Annex B1

Specifications of intended use

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-1-1:2004+AC:2010, EN1992-1-2:2004+AC:2008 and Annex B3 and B4
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing

Installation:


- · Dry or wet concrete
- Installation in water filled bore holes is not admissible
- · Overhead installation admissible
- Hole drilling by hammer drill, vacuum drill or compressed air drill
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be
 determined using a rebar detector suitable for this purpose as well as on the basis of the construction
 documentation and then marked on the building component for the overlap joint)
- The joints for concreting must be roughened to at least such an extent that aggregate protrude
- The installation of post-installed rebar or tension anchor ZA shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the member states in which the installation is done
- Minimum concrete cover acc. to EN 1992-1-1:2004+AC:2010 must be observed

Injection System VHM for rebar connections	
Intended use Specifications of intended use	Annex B2

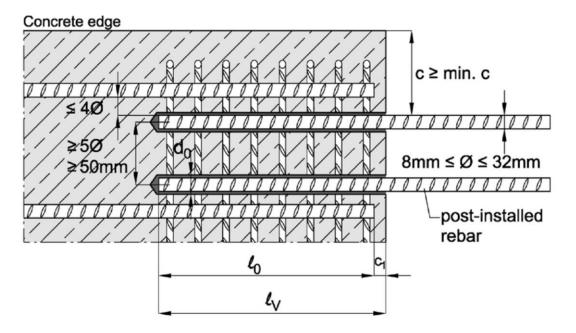
General construction rules for tension anchor ZA

- The length for the post-installed thread must not be added to the anchoring length
- . The tension anchor ZA can only transfer forces towards the bar axis
- Tension forces must be transferred by an overlap joint into the present reinforcement of the member
- The transmission of shear forces must be ensured by additional measures, e.g. by shear cleats or anchors with an European Technical Assessment (ETA)
- In the anchor plate the holes for the tension anchors must be executed as elongated holes with axis in the direction of the shear force
- If the clear distance of overlapping bars is greater than 4Ø, the lap length must be increased by a length equal to the clear space where it exceeds 4Ø

Figure B1: Tension Anchor ZA

- c concrete cover of tension anchor ZA
- c₁ concrete cover at front end of cast-in-place rebar
- c₂ Length of bonded thread
- min c minimum concrete cover according Table B1 and EN 1992-1-1:2004+AC:2010
- Ø diameter of tension anchor (rebar part)
- d diameter of tension anchor (threaded part)
- lap length acc. to EN 1992-1-1:2004+AC:2010
- ℓ_v embedment depth $\ell_v \ge \ell_0 + c_1$
- l_{ges} overall embedment depth $l_{ges} \ge l_0 + c_2$
- d₀ nominal drill bit diameter according Annex B6, to Table B4

Injection System VHM for rebar connections

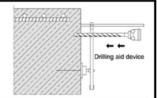

Intended use

General construction rules (Tension anchor ZA)

General construction rules for post-installed rebars

- The shear transfer between old and new concrete shall be designed acc. to EN 1992-1-1:2004+AC:2010
- Only tension forces in the axis of the rebar may be transmitted
- If the clear distance of overlapping bars is greater than 4Ø, the lap length must be increased by a length equal to the clear space where it exceeds 4Ø

Figure B2: Post-installed rebars


- c concrete cover of post-installed rebar
- concrete cover at front end of cast-in-place rebar

min c minimum concrete cover according Table B1 and EN 1992-1-1:2004+AC:2010

- Ø diameter of tension anchor (rebar)
- ℓ₀ lap length acc. to EN 1992-1-1:2004+AC:2010
- ℓ_v embedment depth $\ell_v \ge \ell_0 + c_1$
- d₀ nominal drill bit diameter according to Annex B6, Table B4

Injection System VHM for rebar connections	
Intended use General construction rules (post-installed rebar)	Annex B4

Table B1: Minimum concrete cover min c¹⁾ of post-installed rebar and tension anchor ZA depending on drilling method

Drilling method	Rod diameter	min c (without drilling aid device)	min c (<u>with</u> drilling aid device)		
Hammer drilling	< 25 mm	$30 \text{ mm} + 0.06 \ell_{\text{v}} \ge 2 \varnothing$	$30 \text{ mm} + 0.02 \ell_{v} \ge 2 \varnothing$		
Vacuum drilling	≥ 25 mm	$40 \text{ mm} + 0.06 \ell_{\text{v}} \ge 2 \varnothing$	$40 \text{ mm} + 0.02 \ell_{v} \ge 2 \text{ Ø}$		
Compressed air	< 25 mm	50 mm + 0,08 $\ell_{\rm v}$	50 mm + 0,02 $\ell_{\rm v}$		
drilling	≥ 25 mm	60 mm + 0,08 ℓ_{v}	60 mm + 0,02 $\ell_{\rm v}$		

¹⁾ See Annex B3 and B4; Minimum concrete cover acc. to EN 1992-1-1:2004+AC:2010 must be observed

Table B2: Dimensions and installation parameters of tension anchor ZA

Anchor size		M12	M16	M20	M24		
Thread diameter		d	[mm]	12	16	20	24
Rebar diameter		Ø	[mm]	12	16	20	25
Cross section area (threaded part)			[mm ²]	84	157	245	353
Width across nut flats			[mm]	19	24	30	36
Effective embedment	depth	ℓ_{v}	[mm]	according to static calculation			
Length of bonded	steel, zinc plated	•	[mm]	≥ 20	≥ 20	≥ 20	≥ 20
thread	A4/HCR	C ₂		≥ 100	≥ 100	≥ 100	≥ 100
Maximum installation torque			[Nm]	50	100	150	150

Table B3: Working and curing time

Bore hole temperature		nnerature	Working time	Minimum curing time			
		прегисите	Working time	dry concrete	wet concrete		
- 5 °C	to	- 1 °C	50 min	5 h	10 h		
0 °C	to	+ 4 °C	25 min	3,5 h	7 h		
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h		
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h		
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min		
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min		
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min		
Cartridge temperature			+5°C to +40°C				

Injection System VHM for rebar connections	
Intended use Minimum concrete cover / Installation parameters ZA / Working and curing time	Annex B5

Table B4: Drilling and cleaning

4.0		Drill bit diameter	Brush diameter			
Rebar Ø	Tension anchor	Drill bit diameter	Brush- Ø	min. Brush- Ø		
2	ZA	d ₀	d _b	d _{b,min}		
[mm]	[-]	[mm]	[mm]	[mm]		
8		12	14	12,5		
10		14	16	14,5		
12	M12	16	18	16,5		
14		18	20	18,5		
16	M16	20	22	20,5		
20	M20	25	27	25,5		
22		28	30	28,5		
24		32	34	32,5		
25	M24	32	34	32,5		
28		35	37	35,5		
32		40	43	40,5		

Compressed air hose (min. 6 bar) with air valve

Recommended compressed air tool (min. 6 bar)

Brush RB

Brush extension

SDS Plus Adapter

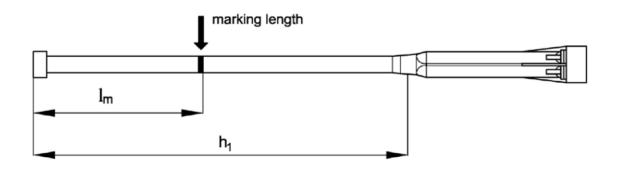
januar ja

Retaining washer VM-IA

Extension pipe

Static mixer

Injection System VHM for rebar connections


Intended use

Cleaning and installation tools

Table B5: Installation tools and max. embedment depth

Rebar	Tension	Drill bit				ridges: ormats			artridge: /-side (825 ml)	
Ø	anchor ZA	diameter d ₀	Retaining washer ¹⁾	Hand- or akku-tool		Compressed air tool		Compressed air tool		
		<u> </u>		L _{v,max}	Extension	ℓ _{v,max}	Extension	L _{v,max}	Extension	
[mm]	[-]	[mm]		[cm]	pipe	[cm]	pipe	[cm]	pipe	
8		12	-			80		80		
10		14	VM-IA 14	VM-XE	VM-XE 10		VM-XE 10	100	VM-XE 10	
12	M12	16	VM-IA 16	70	70	100		120		
14		18	VM-IA 18			100		140		
16	M16	20	VM-IA 20						160	
20	M20	25	VM-IA 25			70				
22		28	VM-IA 28		VM-XE 10	70	VM-XE 10	200	VM-XLE 16	
24		32	VM-IA 32	_	50 VM-XLE 16		VM-XLE 16	200	VIVI-ALE 16	
25	M24	32	VM-IA 32	50		E 0				
28		35	VM-IA 35			50		200		
32		40	VM-IA 40					200		

¹⁾ For horizontal or overhead installation as well as for drill holes deeper than 240mm

On the static mixer and the extension pipe the mortar filling mark l_m and the drill hole depth h_1 must be marked with an adhesive tape or text marker. Rough estimate: $l_m = \frac{1}{3} \cdot h_1$ Fill in the mortar as long until the filling mark l_m will be visible.

Optimal mortar volume:
$$l_m = h_1 * (1.2 * \frac{\phi^2}{d_0^2} - 0.2)$$
 [mm]

 l_m Length from the end of the retaining washer to the mark on the mixer extension

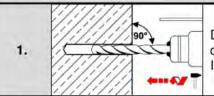
 h_1 drill hole depth = embedment depth ℓ_v resp. ℓ_{ges})

Ø rebar diameter

do nominal drill bit diameter

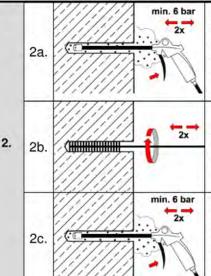
Injection System VHM for rebar connections Intended use Installation tools, max. embedment depth, marking of extension pipe Annex B7

Table B6: Dispensing tools


Cartridge Type Size		Han	d tool	Pneumatic tool
		Hall	Filedinatic tool	
coaxial	150, 280, 333 ml	e.g.: V	M-P 330	e.g.: VM-P 345 Pneumatic
соа	380 to 420 ml	e.g.: VM-P 380 Standard	e.g.: VM-P 380 Profi	e.g.: VM-P 380 Pneumatic
side-by-side	235, 345 ml	e.g.: VM-P 345 Standard	e.g.: VM-P 345 Profi	e.g.: VM-P 345 Pneumatic
side-b	825 ml	-	-	e.g.: VM-P 825 Pneumatic

All cartridges can also be extruded by battery tool (e.g. VM-P Akku)

Injection System	VHM for rebar connections


Installation instructions

Bore hole drilling

Drill hole by hammer drilling, vacuum drilling or compressed air drilling (with drill bit diameter according to Annex B7 and selected embedment depth). In case of aborted holes, the bore holes must be filled with mortar.

Cleaning

Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) (Annex B6) a minimum of **two** times until return air stream is free of noticeable dust.

If the bore hole ground is not reached, an extension must be used.

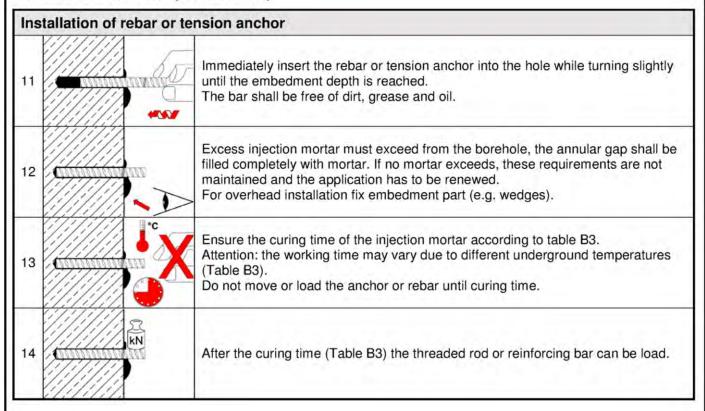
Brush the hole with an appropriate sized wire brush $\geq d_{b,min}$ (Table B4, check minimum brush diameter $d_{b,min}$) a minimum of **two** times with rotary motion. If the bore hole ground is not reached, a brush extension must be used.

Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) again a minimum of **two** times until return air stream is free of noticeable dust.

If the bore hole ground is not reached, an extension must be used.

Injection System VHM for rebar connections

Installation instruction (continuation)


Pre	paring and injection i	nto borehole
5	ev	Mark the position of the embedment depth ℓ_{ν} on the rebar.
6	amminiman —	Check drill hole depth by inserting rebar or anchor rod into the empty hole.
7	Marie S	Prepare cartridge with static mixer (if necessary with extension pipe and retaining washer). Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool (Table B6). For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.
7a	IX I	When extension pipe VM-XLE 16 is used, the tip of the mixer has to be cut off at position "X".
8	min.3x	Prior to applying, discard mortar (forerun) until the mortar shows a consistent grey colour, but at least three full strokes. Never use this mortar!
9		Fill in injection mortar from the bottom of the clean borehole approx 2/3 air bubble free. Slowly moving the static mixer out of the borehole prevents the formation of air inclusions. For embedment larger than 190mm an extension pipe (Annex B6) must be used. Observe the working- and curing time given in table B3.
10		For overhead and horizontal installation and embedment larger than 240mm a retaining washer shall be used. Observe the working- and curing time given in table B3.

Injection System	VHM for	rebar	connections
------------------	---------	-------	-------------

Intended use

Installation instruction (continuation)
Preparing and injection into the borehole

Installation instruction (continuation)

Injection System VHM for rebar connections

Intended use

Installation instruction (continuation)
Installation of rebar or tension anchor

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiplied by the amplification factor α_{lb} acc. to Table C1.

Table C1: Amplification factor alb depending on concrete strength class and drilling method

Concrete strength class	Drilling method	Rod diameter	Amplification factor α_{lb} [-]
C12/15 to C50/60	hammer drilling vacuum drilling compressed air drilling	Ø8 to Ø32 ZA-M12 to ZA-M24	1,0

Table C2: Reduction factor kb for all drilling methods

Rod diameter		Concrete strength class							
		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55
Ø8 to Ø32 ZA-M12 to ZA-M24	k _b [-]	1,0							

Table C3: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for all drilling methods and for good bond conditions

 $f_{bd,PIR} = k_b \cdot f_{bd}$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete strength classes and the rebar diameter according to EN 1992-1-1:2004+AC:2010 (for all other bond conditions multiply the values by 0,7)

k_b: Reduction factor according to Table C2

Pod diameter		Concrete strength class									
	Rod diameter		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
	Ø8 to Ø32 ZA-M12 to ZA-M24	f _{bd,PIR} [N/mm²]	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Injection System VHM for rebar connections	
Performances Amplification factor α_{lb}	Annex C1
Design values of ultimate bond resistance f _{bd,PIR}	İ

Design value of ultimate bond stress $f_{bd,fi}$ under fire exposure for concrete classes C12/15 to C50/60 (all drilling methods):

The design value of ultimate bond stress fbd,fi under fire exposure will be calculated by the following equation:

$$f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$$

with: $\theta \le 364^{\circ}\text{C}$: $k_{\text{fi}}(\theta) = 30,34 * \theta^{(\theta*-0,011)} / (f_{\text{bd,PIR}} * 4,3) \le 1,0$

 $\theta > 364^{\circ}C$: $k_{fi}(\theta) = 0$

f_{bd,fi} design value of ultimate bond stress in case of fire in N/mm²

 θ Temperature in °C in the mortar layer $k_f(\theta)$ Reduction factor under fire exposure

f_{bd,PIR} Design value of the ultimate bond stress in N/mm² in cold condition according to

Table C2 considering concrete class, rebar diameter, drilling method and the bond

conditions according to EN 1992-1-1:2004+AC:2010.

 γ_c partial factor acc. to EN 1992-1-1:2004+AC:2010 $\gamma_{M,fi}$ partial factor acc. to EN 1992-1-2:2004+AC:2008

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond stress fbd,fi.

Figure C1: Example graph of reduction factor k_{fi}(θ)

Concrete strength class C20/25 for good bond conditions 1,20 1,00 Reduction factor k_{II}(0) [-] 0,80 Example for C20/25 0,40 0,20 θ_{max} 0,00 100 300 350 450 Temperature [°C]

Injection System VHM for rebar connections

Performances

Design value of ultimate bond stress f_{bd.fi} under fire exposure for rebar

Annex C2

Table C4: Characteristic tension strength in case of fire for tension anchor ZA, concrete strength class C12/15 to C50/60, acc. to Technical Report TR 020

Tension anchor	ZA			M12	M16	M20	M24			
Steel failure										
Steel, zinc plated										
	R30				20					
Characteristic	R60	_	[N/mm²]		1	5				
tension strength	R90	$\sigma_{Rk,s,fi}$			1	3				
	R120	-			1	0				
Stainless steel A	4, HCR									
	R30				3	0				
Characteristic	R60	_	[N/mm2]		2	5				
tension strength	R90	$\sigma_{Rk,s,fi}$	[N/mm²]	[N/mm²]	Rk,s,fi [N/mm²] 20	0				
	R120	-			1	6				

Design value of the tension strength $\sigma_{\text{Rd},\text{s},\text{fi}}$ under fire exposure for tension anchor ZA

The design value of the steel strength $\sigma_{\text{Rd,s,fi}}$ under fire exposure will be calculated by the following equation:

$$\sigma_{Rd,s,fi} = \sigma_{Rk,s,fi} / \gamma_{M,fi}$$

with:

 $\sigma_{\text{Rk,s,fi}}$ characteristic steel strength acc. to Table C4

Steel strength for tension anchor ZA under fire exposure

 $\gamma_{M,fi}$ partial factor under fire exposure acc. to EN 1992-1-2:2004+AC:2008

Injection System VHM for rebar connections
Performances

Annex C3