

DÉCLARATION DES PERFORMANCES

DoP No MKT-2.1-300 fr

♦ Code d'identification unique du produit type: Système d'injection VMU plus pour béton

♦ Usage(s) prévu(s):
Système d'injection pour ancrage dans le béton,

voir l'annexe/Annex B

♦ Fabricant:
MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

Système(s) d'évaluation et de vérification de la constance des performances::

♦ Document d'évaluation européen: ETAG 001-5

Évaluation technique européenne: ETA-11/0415, 08.12.2017

Organisme d'évaluation technique: DIBt, Berlin

Organisme(s) notifié(s): NB 2873 – Technische Universität Darmstadt

1

→ Performance(s) déclarée(s):

Caractéristiques essentielles	Performances			
Résistance mécanique et stabilité (BWR 1)				
Valeurs caractéristiques pour la contrainte de traction et transversale	Annexe/Annex C1 – C12			
Décalage	Annexe/Annex C13 – C14			
Sécurité en cas d'incendie (BWR 2)				
Le comportement du feu	Classe A1			
Résistance au feu	NPD (No Performance Determined) performances non déterminées			

Les performances du produit identifié ci-dessus sont conformes aux performances déclarées. Conformément au règlement (UE) no 305/2011, la présente déclaration des performances est établie sous la seule responsabilité du fabricant mentionné ci-dessus.

Signé pour le fabricant et en son nom par:

Stefan Weustenhagen (Directeur général)

Weilerbach, 01.01.2021

p.p. Rigallee

Dipl.-Ing. Detlef Bigalke

(Directeur du développement de produits)

L'original de cette déclaration d'exécution a été rédigé en allemand. En cas de divergences dans la traduction, la version allemande fait foi.

Specification of intended use

	Anchor rod	Internally threaded anchor rod					
Injection System VMU plus	VMU-A, V-A, VM-A, commercial standard threaded rod	VMU-IG	rebar				
Static or quasi-static action	M8 - M30 (zinc plated, A4, HCR)	Ø8 - Ø32					
Seismic action, category C1	nic action, category C1 M8 - M30 (zinc plated¹¹, A4, HCR)						
	Reinforced or unreinforced normal weight concrete acc. to EN 206-1:2000						
Base materials	Strength classes acc. to EN 206-1:2000:C20/25 to C50/60 Cracked and uncracked concrete						
Temperature Range I -40 °C to +40 °C	max long term temperature +24 °C and max short term temperature +40 °C						
Temperature Range II -40 °C to +80 °C	max long term temperature +50 °C and max short term temperature +80 °C						
Temperature Range III -40 °C to +120 °C	max long term temperature	+72 °C and max short ter	m temperature +120 °C				

except hot-dip galvanised

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the
 anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors". Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, IG-M6 to IG-M20, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, IG-M6 to IG-M10, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode or vacuum drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system VMU plus for concrete	
Intended Use Specifications	Annex B1

Table B1: Installation parameters for threaded rod

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	$d_0 =$	[mm]	10	12	14	18	24	28	32	35
Effective analysis and doubt	$h_{\rm ef,min}$	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth —	$h_{ef,max}$	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾	$d_f \leq$	[mm]	9	12	14	18	22	26	30	33
Installation torque	T _{inst} ≤	[Nm]	10	20	40	80	120	160	180	200
Minimum thickness of member	h_{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀					
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d_{nom} + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	$d_2 =$	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ²⁾	d _{nom} =	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	24	28	35
Effective analysis adoptin	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective anchorage depth ——	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	I_{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀			
Minimum spacing	S _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	C _{min}	[mm]	50	60	80	100	120	150

¹⁾ For larger clearance hole see TR029 section 1.1

Table B3: Installation parameters for rebar

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	16	18	20	24	32	35	40
Effective anchorage depth	$h_{\rm ef,min}$	[mm]	60	60	70	75	80	90	100	112	128
Effective anchorage depth —	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h_{min}	[mm]	mm]		h _{ef} + 2d ₀						
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

Injection system VMU plus for concrete
--

Intended Use

Installation parameters

Annex B2

²⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B4: Parameter cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit Ø	Brush Ø	min. Brush Ø	-	Retaining washer Installation direction and use of retaining washer			
[-]	[-]	Ø [mm]	d₀ [mm]	d₅ [mm]	d _{b,min} [mm]	[-]	•	•	1	
M8			10	12	10,5					
M10	VMU-IG M 6	8	12	14	12,5	No.	votolnina v	vaahar raau	ام من	
M12	VMU-IG M 8	10	14	16	14,5	NO	retaining washer required			
		12	16	18	16,5					
M16	VMU-IG M10	14	18	20	18,5	VM-IA 18				
		16	20	22	20,5	VM-IA 20				
M20	VMU-IG M12	20	24	26	24,5	VM-IA 24				
M24	VMU-IG M16		28	30	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all	
M27		25	32	34	32,5	VM-IA 32	20011111	20011111		
M30	VMU-IG M20	28	35	37	35,5	VM-IA 35				
		32	40	41,5	40,5	VM-IA 40				

Blow-out pump (volume 750ml) Drill bit diameter (d_0): 10 mm to 20 mm Anchorage depth (h_{ef}): \leq 10 d_{nom} for uncracked concrete

Recommended compressed air tool (min 6 bar) All applications

Retaining washer for overhead or horizontal installation
Drill bit diameter (d₀):
18 mm to 40 mm

Steel brush Drill bit diameter (d_0): all diameters

Injection system VMU plus for concrete

Intended Use

Cleaning and setting tools

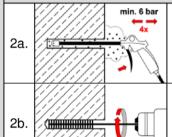
Annex B3

Installation instructions

Drilling of the hole

1.

Drill the borehole by apllying the drilling method acc. to Annex B1, the drill bit diameter (Table B4) and the selected borehole depth.

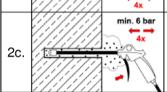

In case of aborted drill hole, the drill hole shall be filled with mortar

Cleaning

Attention! Standing water in the bore hole must be removed before cleaning!

Cleaning with compressed air

(all diameters, cracked and uncracked concrete)

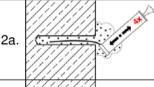


Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) **four** times.

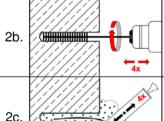
If the bore hole ground is not reached, an extension must be used.

Attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) **four** times.

If the bore hole ground is not reached, a brush extension shall be used.


Finally blow the hole clean again with compressed air (min. 6 bar)

four times. If the bore hole ground is not reached an extension shall be used.


Manual cleaning

2.

<u>Uncracked concrete:</u> Bore hole diameter $d_0 \le 20$ mm and effective anchorage depth $h_{ef} \le 10 d_{nom}$ Cracked concrete: Bore hole diameter: 14mm $\le d_0 \le 20$ mm and effective anchorage depth $h_{ef} \le 10 d_{nom}$

Starting from the bottom or back of the bore hole, blow the hole clean with the blow-out pump **four** times.

Attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) **four** times.

If the bore hole ground is not reached, a brush extension shall be used.

Finally blow the hole clean again with the blow-out pump ${\bf four}$ times.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Injection system VMU plus for concrete

Intended Use

Installation instructions

Annex B4

	llation instructions (continuation)	
Injec	tion		
3.	W III 3	Attach a supplied static-mixing nozzle to the cartridge and load the cartridge dispensing tool. For every working interruption longer than the recommended working time (Table B6) as well as for new cartridges, a new static-mixer shall be used.	
4.	hef	Before injecting the mortar, mark the required anchorage depth on the faste	ening element.
5.	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of and discard non-uniformly mixed adhesive components until the mortar sho grey colour. For tubular film cartridges dismiss a minimum of six full strokes	ws a consistent
6a.		Starting from the bottom or back of the cleaned drill hole fill the hole up to a two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the ho pockets. For embedment larger than 190mm an extension nozzle shall be unobserve the gel-/ working times given in Table B5 or Table B6.	le fills to avoid air
6b.	None of the last o	 Retaining washer and mixer nozzle extensions shall be used according to A following applications: Horizontal installation (horizontal direction) and ground installation downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment dept Overhead installation: Drill bit-Ø d₀ ≥ 18 mm 	(vertical
Inser	ting the anchor		
7.		Push the threaded rod into the hole while turning slightly to ensure proper d adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.	istribution of the
8.		Make sure that the anchor is fully seated up to the full embedment depth an mortar is visible at the top of the hole. If these requirements are not maintain rod immediately and start again with step 6. For overhead installation, the anchor should be fixed (e.g. by wedges).	
9.		Allow the adhesive to cure to the specified time prior to applying any load or move or load the anchor until it is fully cured (Table B5 or Table B6).	r torque. Do not
10.		Remove excess mortar.	
11.	T _{INST}	The fixture can be mounted after curing time. Apply installation torque Tinst Table B1or B2 by using a calibrated torque wrench. Optionally, the annular anchor rod and attachment can be filled with mortar. Therefor replace the rewasher with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.	gap between
Inie	ection system VMU	plus for concrete	
Inte	nded Use allation instructions (co	•	Annex B5

Table B5: Maximum processing time and minimum curing time, VMU plus

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾
-10°C to -6°C	90 min ²⁾	24 h ²⁾
-5°C to -1°C	90 min	14 h
0°C to +4°C	45 min	7 h
+5°C to +9°C	25 min	2 h
+10°C to +19°C	15 min	80 min
+20°C to +29°C	6 min	45 min
+30°C to +34°C	4 min	25 min
+35°C to +39°C	2 min	20 min
+ 40°C	1,5 min	15 min
Cartridge temperature	+ 5°C to	o + 40°C

¹⁾ In wet concrete the curing time must be doubled.
2) Cartridge temperature must be at min. + 15°C.

Maximum processing time and minimum curing time, VMU plus Polar Table B6:

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾
- 20°C to -16°C	75 min	24 h
-15°C to -11°C	55 min	16 h
-10°C to -6°C	35 min	10 h
-5°C to -1°C	20 min	5 h
0°C to +4°C	10 min	2,5 h
+5°C to +9°C	6 min	80 min
+10°C	6 min	60 min
Cartridge temperature	- 20°C to	o + 10°C

¹⁾ In wet concrete the curing time must be doubled.

Injection system VMU plus for concrete	
Intended Use Processing time and curing time	Annex B6

Table C1: Characteristic **steel resistances** for **threaded rods** under tension and shear loads

Thread	ed rod			М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel fa	ailure										
Tension	n load										
e e	Steel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
stic	Steel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
teri	Steel, Property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resistance	Stainless steel A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
ter	Stainless steel A4 and HCR, Property class 70 N _{Rk,s} [kN		[kN]	26	41	59	110	171	247	-	-
	Steel, Property class 4.6	γMs,N	[-]		2,0						
	Steel, Property class 4.8	γMs,N	[-]	1,5							
tor	Steel, Property class 5.6 γ _{Ms,N} [-] 2,0										
Steel, Property class 5.6 Steel, Property class 5.8 Steel, Property class 5.8 YMs,N [-] Steel, Property class 5.8 YMs,N [-] Steel, Property class 8.8 YMs,N [-] Stainless steel A4 and HCR,											
rtia	Steel, Property class 8.8	$\gamma_{\text{Ms,N}}$	[-]	-] 1,5							
Pa	Stainless steel A4 and HCR, Property class 50	γMs,N	[-]	2,86							
	Stainless steel A4 and HCR, Property class 70	[-]	1,87					-	-		
Shear I	oad										
Steel fa	ailure <u>without</u> lever arm										
Ф	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
stic	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
sist	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15 23 34 63 98 141 184					224		
Characteristic shear resistance	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
o ds	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13 20 30 55 86 124				124	-	-	
Steel fa	ailure <u>with</u> lever arm										
世	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
istic	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
cteri	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic ending momer	Steel, Property class 4.8 and 4.8 Steel, Property class 5.6 and 5.8 Steel, Property class 8.8 Steel, Property class 8.8 Mak,s [IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		[Nm]	19	37	66	167	325	561	832	1125
Ch	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
	Steel, Property class 4.6	γMs,V	[-]	1,67							
	Steel, Property class 4.8 γ _{Ms,V} [-				1,25						
tor	Steel, Property class 5.6 γ _{Ms,V} [-			1,67							
l fac	Steel, Property class 5.6 Steel, Property class 5.8 Steel, Property class 5.8 Steel, Property class 8.8 γ _{Ms,V} [- γ _{Ms,}				1,25						
rtia	Steel, Property class 8.8	γMs,V	[-]				1,	25			
Pa	Stainless steel A4 and HCR, Property class 50	γMs,V	[-]				2,	38			
	Stainless steel A4 and HCR, Property class 70	$\gamma_{\text{Ms,V}}$	[-]			1,	56			-	-

Injection s	system VMU	plus for	concrete
IIIICCLICII S	SACCILI A INIC	DIGS IOI	

Characteristic steel resistances for threaded rods under tension and shear loads

Table C2: Characteristic values for threaded rods under tension loads in cracked concrete

Threaded rod				М8	M10	M12	M16	M20	M24	M27	M30
Steel failure											
Characteristic tension res	sistance	N _{Rk,s}	[kN]				see ta	ble C1			
Combined pull-out and	concrete cone fa	ilure									
Characteristic bond resis	tance in cracked c	oncrete C20	0/25								
Temperature range I: 40°C/24°C	τ _{Rk,cr}	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5	
40°0/24°0	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5	no pe	rformand (NF		mined
Temperature range II: dry and wet concrete 80°C/50°C		τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
80°C/50°C flooded bore hole		τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0	no performance determine (NPD)			
Temperature range III: dry and wet concrete		τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
120°C/72°C	120°C/72°C flooded bore hole		[N/mm²]	2,0	2,5	3,0	3,0	no performance determine (NPD)			
			C25/30	1,02							
			C30/37								
Increasing factor for $\tau_{Rk,ci}$		Ψς	C35/45	1,07							
moredaing laster for this,ci		Ψ	C40/50	1,08							
			C45/55		1,09						
			C50/60	1,10							
Factor according to CEN	k ₈	[-]				7	,2				
Concrete cone failure											
Factor according to CEN	k _{cr}	[-]		7,2							
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}								
Axial distance s _{cr}			[mm]		3,0 h _{ef}						
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0	1,0 1,2						
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1	,4		no pe	rformand NF)		mined

Injection system VMU plus for concrete
--

Characteristic values for threaded rods under tension loads in cracked concrete

Table C3: Characteristic values for threaded rods under tension loads in uncracked concrete

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure											
Characteristic tension re	esistance	$N_{Rk,s}$	[kN]				see ta	ble C1			
Combined pull-out and	d concrete cone	failure									
Characteristic bond resi	stance in uncrac	ked concrete	e C20/25								
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	10	12	12	12	12	11	10	9
40°C/24°C flooded bore hole		τ _{Rk,ucr}	[N/mm²]	7,5	7,5 8,5 8,5 8,5 no performance de (NPD)						mined
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]					7,5	6,5		
80°C/50°C	flooded bore hole $\tau_{Rk,ucr}$ [N/mm²] 5,5 6,5 6,5 no performance detection (NPD)				ce deter PD)	mined					
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	- (NPD)					mined		
		C25/30				1,	02				
		C30/37	1,04								
Increasing factor for τ_{Rk} ,			C35/45				1,	1,07			
increasing factor for t _{Rk} ,	ucr	Ψс	C40/50				1,	1,08			
			C45/55				1,	09			
			C50/60				1,	10			
Factor according to CEN	N/TS 1992-4-5	k ₈	[-]				10),1			
Concrete cone failure											
Factor according to CEN	N/TS 1992-4-5	k _{ucr}	[-]				10),1			
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}							
Axial distance		S _{cr,N}	[mm]								
Splitting failure											
Edge distance for		C _{cr,sp}	[mm] $1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}}\right) \le 2,4 \cdot h_{ef}$					ı			
Axial distance		S _{cr,sp}	[mm] 2 c _{cr,sp}								
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1,2			
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1	,4		no pe	rforman (NF	ce deter PD)	mined

Injection system	VMU pl	us for	concrete
------------------	--------	--------	----------

Characteristic values for threaded rods under tension loads in uncracked concrete

Table C4: Characteristic values for threaded rods under shear loads in cracked and uncracked concrete

Threaded rod		M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm										
Characteristic shear resistance	$V_{Rk,s}$	[kN]				see ta	ble C1			
Ductility factor acc. to CEN/TS 1992-4-5	k ₂	[-]				0	,8			
Steel failure with lever arm										
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]	see table C1							
Concrete pry-out failure		•								
Factor k acc. to TR 029 or k ₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]	2,0							
Concrete edge failure										
Effective length of anchor	l _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$							
Outside diameter of anchor	d _{nom}	[mm]	8 10 12 16 20 24 27					30		
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0							

	Injection system	VMU plus	for concrete
--	------------------	----------	--------------

Characteristic value for threaded rods under shear loads

Table C5: Characteristic values for threaded rods under seismic action, category C1

,- , -										
			M8	M10	M12	M16	M20	M24	M27	M30
esistance	N _{Rk,s,seis}	[kN]			1,0 •	$N_{Rk,s}$	(see ta	ıble C1)		
d concrete cone fa	ailure									
	C20/25 to (C50/60								
dry and wet concrete	TRk,seis	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
Temperature range I: wet concrete 40°C/24°C flooded bore hole			2,5	2,5	3,7	3,7	no pe	mined		
Temperature range II: wet concrete			1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C flooded bore hole			1,6	5 1,9 2,7 2,7 no performance determined (NPD)					mined	
dry and Temperature range III: wet concrete			1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
flooded bore hole	TRk,seis	[N/mm ²]	1,3	1,6	2,0	2,0	no performance determin (NPD)			
seis	Ψc	[-]		1,0						
	$\gamma_2 = \gamma_{inst}$	[-]	1,0				1,2			
	$\gamma_2 = \gamma_{inst}$	[-]		1,	,4		no pe			mined
ver arm										
istance	V _{Rk,s,seis}	[kN]			0,7 • \	/ _{Rk,s}	(see tak	ole C1)		
arm										
moment	M ⁰ _{Rk,s,seis}	[Nm]		No	Perfor	mance [Determin	ned (NPI	D)	
	stance in concrete dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole seis	stance in concrete C20/25 to $\frac{1}{2}$ dry and wet concrete flooded bore hole $\frac{1}{2}$ TRk,seis flooded bore hole $\frac{1}{2}$ TRk,seis $\frac{1}{2$	stance in concrete C20/25 to C50/60 dry and wet concrete flooded bore hole dry and wet concrete $\tau_{Rk,seis}$ [N/mm²]	esistance $N_{Rk,s,seis}$ [kN] If concrete cone failure stance in concrete C20/25 to C50/60 dry and wet concrete flooded bore hole $\tau_{Rk,seis}$ [N/mm²] 2,5 dry and wet concrete $\tau_{Rk,seis}$ [N/mm²] 1,6 flooded bore hole $\tau_{Rk,seis}$ [N/mm²] 1,6 dry and wet concrete $\tau_{Rk,seis}$ [N/mm²] 1,6 dry and wet concrete $\tau_{Rk,seis}$ [N/mm²] 1,3 wet concrete $\tau_{Rk,seis}$ [N/mm²] 1,3 seis ψ_c [-] ψ_c [-] ver arm istance $\psi_{Rk,s,seis}$ [kN]	esistance $N_{Rk,s,seis}$ $[kN]$ disconcrete cone failure stance in concrete C20/25 to C50/60 dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole $\tau_{Rk,seis}$ $[N/mm^2]$ 2,5 2,5 2,5 dry and wet concrete flooded bore hole $\tau_{Rk,seis}$ $[N/mm^2]$ 1,6 2,2 flooded bore hole $\tau_{Rk,seis}$ $[N/mm^2]$ 1,6 1,9 dry and wet concrete flooded bore hole $\tau_{Rk,seis}$ $[N/mm^2]$ 1,3 1,6 floode	esistance $N_{Rk,s,seis}$ $[kN]$ $1,0 \cdot M_{Rk,s,seis}$ $[kN]$ $1,0 \cdot M_{Rk,seis}$ $[kN]$	esistance $N_{Rk,s,seis}$ $[kN]$ $1,0 \cdot N_{Rk,s}$ I concrete cone failure stance in concrete C20/25 to C50/60 I dry and wet concrete I	Psistance $N_{Rk,s,seis}$ $[kN]$ $1,0 \cdot N_{Rk,s}$ (see tail or concrete cone failure stance in concrete C20/25 to C50/60 $[N/mm^2]$ 2,5 3,1 3,7 3,7 3,7 $[N/mm^2]$ 2,5 2,5 3,7 3,7 no perform only form only	Prisistance $N_{Rk,s,seis}$ $[kN]$ $1,0 \cdot N_{Rk,s}$ (see table C1) and concrete cone failure stance in concrete C20/25 to C50/60 dry and wet concrete $\tau_{Rk,seis}$ $[N/mm^2]$ 2,5 3,1 3,7 3,7 3,7 3,8 no performant (NF dry and wet concrete $\tau_{Rk,seis}$ $[N/mm^2]$ 2,5 2,5 3,7 3,7 3,7 no performant (NF dry and wet concrete $\tau_{Rk,seis}$ $[N/mm^2]$ 1,6 2,2 2,7 2,7 2,7 2,8 flooded bore hole $\tau_{Rk,seis}$ $[N/mm^2]$ 1,6 1,9 2,7 2,7 no performant (NF dry and wet concrete $\tau_{Rk,seis}$ $[N/mm^2]$ 1,3 1,6 2,0 2,0 2,0 2,1 flooded bore hole $\tau_{Rk,seis}$ $[N/mm^2]$ 1,3 1,6 2,0 2,0 2,0 no performant (NF dry and wet concrete $\tau_{Rk,seis}$ $[N/mm^2]$ 1,3 1,6 2,0 1,0 1,2 $\tau_{Rk,seis}$ τ_{Rk,s	Sistance N _{Rk,s,seis} [kN] 1,0 · N _{Rk,s} (see table C1)

Injection system VML	J plus for concrete
----------------------	---------------------

Characteristic values for $threaded\ rods$ under $seismic\ action,$ category C1

Table C6: Characteristic values of tension loads for internally threaded anchor rods in cracked concrete

Internally threaded and	chor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M20
Steel failure 1)									
Characteristic shear res Steel, strength class 5.8		$N_{Rk,s}$	[kN]	10	18	29	42	79	123
Partial factor		γ _{Ms,N}	[-]			1	,5		
Characteristic shear res Steel, strength class 8.8		$N_{Rk,s}$	[kN]	16	27	46	67	121	196
Partial factor		γмs,N	[-]	1,5					
Characteristic shear res Stainless steel A4 / HCF	$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor		γ̃Ms,N	[-]			1,87			2,86
Combined pull-out and	d concrete cone failure	Э							
Characteristic bond resi	stance in <u>cracked</u> cond	rete C20	/25						
Temperature range I:	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	5,0	5,5	5,5	5,5	5,5	6,5
40°C/24°C	$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0 5,5 5,5 no performance de (NPD)			termined		
Temperature range II:	Temperature range II: dry and wet concrete flooded bore hole		[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5
80°C/50°C			[N/mm²]	3,0	4,0	4,0	no perfoi	mance de (NPD)	termined
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk},\text{cr}}$	[N/mm ²]	2,5	3,0	3,0	3,0 3,0		3,5
120°C/72°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm²]	2,5 3,0 3,0 no performance determine (NPD)					termined
			C25/30	1,02					
			C30/37	1,04					
Increasing factor for τ_{Rk}		11/-	C35/45			1,	07		
moreasing factor for take,	cr	Ψc	C40/50			1,	08		
			C45/55			1,	09		
			C50/60	1,10					
Factor according to CEN/TS 1992-4-5			[-]	7,2					
Concrete cone failure									
Factor according to CEN	V/TS 1992-4-5	k _{cr}	[-]			7	,2		
Edge distance			[mm]	1,5 h _{ef}					
Spacing			[mm]	3,0 h _{ef}					
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,2					
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1,4		·	mance de (NPD)	

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must compley with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element ²⁾ For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Injection system VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under tension loads in cracked concrete

Table C7: Characteristic values of tension loads for internally threaded anchor rods in uncracked concrete

Internally threaded and	chor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure 1)										
Characteristic shear resi Steel, strength class 5.8	istance	$N_{Rk,s}$	[kN]	10	18	29	42	79	123	
Partial factor		$\gamma_{Ms,N}$	[-]		1,5					
Characteristic shear resi Steel, strength class 8.8	istance	$N_{Rk,s}$	[kN]	16	16 27 46 67 121					
Partial factor		γ _{Ms,N}	[-]		1,5					
Characteristic shear resi Stainless steel A4 / HCF		$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor		$\gamma_{\text{Ms},\text{N}}$	[-]			1,87			2,86	
Combined pull-out and	l concrete cone failure	•								
Characteristic bond resis	stance in <u>uncracked</u> co	ncrete C	20/25							
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	12	12	12	12	11	9,0	
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,5	no perfor	mance de	termined	
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	9,0	9,0	9,0	9,0	8,5	6,5	
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	6,5	6,5	6,5	no perfor	termined		
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0	
120°C/72°C	τ _{Rk,ucr}	[N/mm²]	5,0	5,0	5,0	no perfor	mance de	termined		
		C25/30			1,0					
			C30/37			1,0				
Increasing factor for $\tau_{Rk,\iota}$	ucr	Ψc	C35/45	1,07 1,08						
•		, -	C40/50 C45/55			1,0				
			C50/60							
Factor according to CEN	I/TS 1992-4-5	k ₈	[-]	1,10 10,1						
Concrete cone failure										
Factor according to CEN	I/TS 1992-4-5	k _{ucr}	[-]			10),1			
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}			
Spacing		S _{cr,N}	[mm]			3,0	h _{ef}			
Splitting failure										
	h/h _{ef} ≥ 2,0					1,0	h _{ef}			
Edge distance	$C_{\text{cr,sp}}$	[mm]			2 * h _{ef} (2,5	5 – h / h _{ef})				
			2,4 h _{ef}							
Spacing S _{cr,sp}			[mm]	2 c _{cr,sp}						
Installation factor (dry and wet concrete)	γ:	$_2 = \gamma_{inst}$	[-]	1,2						
Installation factor (flooded bore hole)	γ:	$_2 = \gamma_{inst}$	[-]		1,4		no perfor	mance de	termined	

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must compley with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

2) For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Injection system VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under tension loads in uncracked concrete

Table C8: Characteristic values for internally threaded anchor rods under shear loads in cracked and uncracked concrete

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure without lever arm1)									
Characteristic shear resistance Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	39	61	
Partial factor	$\gamma_{Ms,V}$	[-]			1,	25			
Characteristic shear resistance Steel, strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98	
Partial factor	$\gamma_{Ms,V}$	[-]			1,	25			
Characteristic shear resistance Stainless steel A4 / HCR, strength class 70	$V_{Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾	
Partial factor	$\gamma_{Ms,V}$	[-]	1,56 2						
Ductility factor according to CEN/TS 1992-4-5	k ₂	[-]	0,8						
Steel failure with lever arm1)									
Characteristic bending moment, Steel, strength class 5.8	${\sf M^0}_{\sf Rk,s}$	[Nm]	8	19	37	66	167	325	
Partial factor	$\gamma_{\text{Ms,V}}$	[-]	1,25						
Characteristic bending moment, Steel, strength class 8.8	$M^0_{Rk,s}$	[Nm]	12	30	60	105	267	519	
Partial factor	$\gamma_{\text{Ms},\text{V}}$	[-]			1,	25			
Characteristic bending moment, Stainless steel A4 / HCR, strength class 70	$M^{o}_{Rk,s}$	[Nm]	11	26	53	92	234	643 ²⁾	
Partial factor	$\gamma_{\text{Ms,V}}$	[-]			1,56			2,38	
Concrete pry-out failure									
Factor k acc. to TR 029 or k ₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]			2	,0			
Concrete edge failure									
Effective length of anchor	I _f	[mm]			I _f = min(h	ef; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30	
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0			

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must compley with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Injection system VMU plus for concrete	
Performance Characteristic values for internally threaded anchor rods under shear loads	Annex C8

²⁾ For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Table C9: Characteristic values for rebar under tension loads in cracked concrete

Rebar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure								•	•				
Characteristic tension re	esistance	$N_{Rk,s}$	[kN]	$A_s \cdot f_{uk}^{-1}$									
Combined pull-out and	d concrete cor	ne failure											
Characteristic bond resi	stance in crack	ed concre	te C20/25										
Temperature range I:	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5	5,5	no per	formand (NF	ce deter PD)	mined	
Temperature range II:	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
80°C/50°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0	4,0	no performance dete (NPD)			mined	
Temperature range III:	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5	
120°C/72°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	no performance determin (NPD)			mined	
			C25/30	1,02									
			C30/37	1,04									
Increasing factors for τ_R	k.cr	Ψс	C35/45					1,07					
	.,	, ,	C40/50					1,08					
			C45/55 C50/60	1,09 1,10									
Factor acc. to CEN/TS 1	1992-1-5	k ₈	[-]					7,2					
Concrete cone failure	1002 4 0	118	r 1					7,2					
Factor acc. to CEN/TS 1	1992-4-5	k _{cr}	[-]					7,2					
Edge distance	1002 7 0		[mm]					1,5 h _{ef}					
			[mm]					3,0 h _{ef}					
Installation factor				4.0									
(dry and wet concrete) Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$ $\gamma_2 = \gamma_{inst}$	[-] [-]	1,0		1,4		1	,2 no perf	ormano (NP	e deter 'D)	mined	

 $[\]overline{f_{uk}} = f_{tk} = k \cdot f_{yk}$

Injection system	VMU p	olus for	concrete
------------------	-------	----------	----------

Characteristic values for rebar under tension loads in cracked concrete

Table C10: Characteristic values for rebar under tension loads in uncracked concrete

Rebar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure													
Characteristic tension re	sistance	$N_{Rk,s}$	[kN]	A _s • f _{uk} ¹⁾									
Combined pull-out and	concrete cone	failure											
Characteristic bond resis	stance in uncrack	ked concr	ete C20/25										
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	12	11	10	8,5	
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5			ormanc ed (NP		
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0	
80°C/50°C flooded bore hold		τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5			rformance ined (NPD)		
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
120°C/72°C flooded bore hole		$ au_{Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0			ormanc led (NP		
·			C25/30	1,02									
			C30/37					1,04					
Increasing factors for τ_{Rk}			C35/45					1,07					
increasing factors for tak	i,ucr	Ψc	C40/50	1,08									
			C45/55	1,09									
			C50/60	1,10									
Factor acc. to CEN/TS 1	992-4-5	k ₈	[-]	10,1									
Concrete cone failure													
Factor acc. to CEN/TS 1	992-4-5	k _{ucr}	[-]					10,1					
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}	f				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}	f				
Splitting failure													
Edge distance for		C _{cr,sp}	[mm]			1,0·h	_{ef} ≤2·h	ef (2,5-	$\left(\frac{h}{h_{ef}}\right) \le 2$	2,4·h _{ef}			
Axial distance s			[mm]					2 c _{cr,sp}					
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0 1,2									
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]			1,4					ormance ed (NP		

 $^{^{1)}} f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection	system	VMII plus	for co	ncrete
HILLCUION	3 4 3 1 5 1 1 1	VIVIO DIG	, 101 60	

Characteristic values for rebar under tension loads in uncracked concrete

Table C11: Characteristic values for rebar under shear loads in cracked and uncracked concrete

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	$V_{Rk,s}$	[kN]	$0,50 \cdot A_s \cdot f_{uk}^{1)}$								
Ductility factor according to CEN/TS 1992-4-5	k ₂	[-]	0,8								
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1,2 • W _{el} • f _{uk} ¹⁾								
Concrete pry-out failure											
Factor k acc. to TR 029 or k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]					2,0				
Concrete edge failure											
Effective length of anchor	I f	[mm]				$I_f = m$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0								

 $[\]overline{\ ^{1)}\ f_{uk}}=f_{tk}=k\ \boldsymbol{\cdot}\ f_{yk}$

Characteristic values for rebar under shear loads in cracked and uncracked concrete

Table C12: Characteristic values for rebar under seismic action, category C1

Rebar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Tension load												
Steel failure												
Characteristic tension re	esistance	N _{Rk,s,seis}	[kN]	$A_s \cdot f_{uk}^{1)}$								
Combined pull-out and	l concrete cone	failure										
Characteristic bond resis	stance in concre	te C20/25 t	o C50/60									
Temperature range I:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	2,5	2,5	3,7	3,7	3,7	d	no performance determined (NPI		
Temperature range II: 80°C/50°C	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
	flooded bore hole	τ _{Rk,seis}	[N/mm²]	1,6	1,9	2,7 2,7 no performant determined (NF						
Temperature range III:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	flooded bore hole	τ _{Rk,seis}	[N/mm²]	1,3 1,6 2,0 2,0 2,0 no performance determined (NPD							e D)	
Increasing factor for $\tau_{Rk,s}$	seis	Ψc	[-]					1,0				
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1	,2			
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]			1,4			no pei		ce dete PD)	rmine
Shear load												
Steel failure without le	ver arm											
Characteristic shear resi	stance	$V_{Rk,s,seis}$	[kN]	0,35 • A _s • f _{uk} ¹⁾								
Steel failure with lever	arm	'										
Characteristic bending n	noment	M ⁰ _{Rk,s,seis}	[Nm]			no pe	rforman	ice dete	rmined	(NPD)		
1) f. – f. – k • f.												

 $^{^{1)}} f_{uk} = f_{tk} = k \cdot f_{yk}$

Characteristic values for ${\bf rebar}$ under ${\bf seismic}$ action, category ${\bf C1}$

Table C13: Displacements under tension loads¹⁾

(threaded rod and internally threaded anchor rod)

Threaded rod	Threaded rod			M10 IG-M6	M12 IG-M8	M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M20	
Uncracked concrete Ca	20/25										
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C20/	25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90	0,070						
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05	0,105						
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,	170			
80°C/50°C			0,2	255	0,245						
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170						
120°C/72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,2	255			0,	245			

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{N0} &= \delta_{N0}\text{-Faktor} \cdot \tau; & \tau\text{: acting bond stress for tension load} \\ \delta_{Nm} &= \delta_{Nm}\text{-Faktor} \cdot \tau \end{split}$$

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Table C14: Displacements under shear load¹⁾

(threaded rod and internally threaded anchor rod)

Threaded rod		M8	M10 IG-M6	M12 IG-M8	M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M20	
Uncracked concrete C20/25										
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete C2	20/25									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

1) Calculation of the displacement
2 factor · V: V: acting shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor $\cdot V$;

Injection system VMU plus for concrete

Performance

Displacements (threaded rod and internally threaded anchor rod)

Table C15: Displacements under tension load¹⁾ (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concrete C20/25												
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete C20/25												
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,090		0,070							
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,105		0,105							
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,219		0,170							
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,255		0,245							
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,219		0,170							
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,255		0,245							

 $^{^{1)}}$ Calculation of the displacement $\delta_{N0}=\delta_{N0}\text{-Faktor}\ \cdot \tau; \qquad \tau\text{: acting bond stress for tension load} \\ \delta_{N\infty}=\delta_{N\infty}\text{-Faktor}\ \cdot \tau;$

Table C16: Displacements under shear load 1) (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

Calculation of the displacement $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V; \qquad \qquad V\text{: acting shear load}$

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Injection system VMU plus for concrete

Displacements (rebar)