

... eine starke Verbindung

DÉCLARATION DES PERFORMANCES

DoP No MKT-2.3-200_fr

¢	Code d'identification unique du produit type:	Système à injection VMU plus pour liaison de ferraillage ultérieure
¢	Usage(s) prévu(s):	Systèmes pour les connexions de barres d'armature post-installées, voir l'annexe/Annex B
¢	Fabricant:	MKT Metall-Kunststoff-Technik GmbH & Co.KG Auf dem Immel 2 67685 Weilerbach
¢	Système(s) d'évaluation et de vérification de la constance des performances:	1
♦	Document d'évaluation européen:	EAD 330087-00-0601
	Évaluation technique européenne:	ETA-11/0514, 17.05.2018
	Organisme d'évaluation technique:	DIBt, Berlin
	Organisme(s) notifié(s):	NB 2873 – Technische Universität Darmstadt
٨	Demiermenee (a) déalaué a (a).	

Performance(s) déclarée(s):

Caractéristiques essentielles	Performances		
Résistance mécanique et stabilité (BWR 1)			
Résistances caractéristiques pour les charges statiques et quasi-statiques	Annexe/Annex C1		
Sécurité en cas d'incendie (BWR 2)			
Le comportement du feu	Classe A1		
Résistance au feu	Annexe/Annex C2 – C3		

Les performances du produit identifié ci-dessus sont conformes aux performances déclarées. Conformément au règlement (UE) no 305/2011, la présente déclaration des performances est établie sous la seule responsabilité du fabricant mentionné ci-dessus.

Signé pour le fabricant et en son nom par:

Stefan Weustenhagen (Directeur général) Weilerbach, 01.01.2021

p.p. Rigella

Dipl.-Ing. Detlef Bigalke (Directeur du développement de produits)

L'original de cette déclaration d'exécution a été rédigé en allemand. En cas de divergences dans la traduction, la version allemande fait foi.

Specifications of intended use													
Anchorages subject to: Rebar	<i>~</i>	<i>α</i> 10	<i>(</i> 11)	<i>Q</i> 14	<i>(</i> 216	<i>a</i> 20	Ø22	Ø24	<i>(</i> 705	Ø28	<i>(((((((((((((</i>		
nepar	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	<i>©</i> 22	Ø24	Ø25	Ø28	Ø32		
Static or quasi-static action	\checkmark												
Fire exposure						✓							
Tension anchor ZA	M12	2 N	116	M20	M2	24							
Static or quasi-static action	\checkmark												
Fire exposure			\checkmark		\checkmark								

Base material:

- Reinforced or unreinforced normal weight concrete acc. to EN 206-1:2000
- Strength classes C12/15 to C50/60 acc. to EN 206-1:2000
- Maximum chloride concrete of 0,40 % (CL 0,40) related to the cement content acc. to EN 206-1:2000
- Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of \emptyset + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature range:

• - 40 °C to +80 °C (max. short term temperature +80 °C and max. long term temperature +50 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

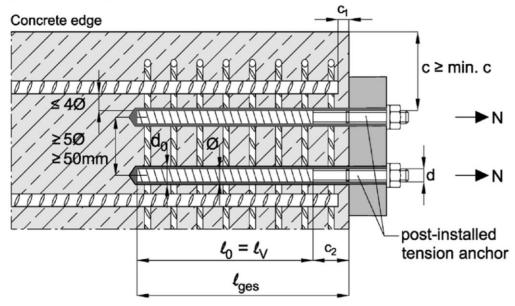
Injection System VMU plus for rebar connections

Intended use Specification of intended use Annex B1

Specifications of intended use

Design:

- · Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B3 and B4
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing


Installation:

- Dry or wet concrete
- · Installation in water filled bore holes is not admissible
- · Overhead installation admissible
- · Hole drilling by hammer drill, vacuum drill or compressed air drill
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint)
- · The joints for concreting must be roughened to at least such an extent that aggregate protrude
- The installation of post-installed rebar or tension anchor ZA shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the member states in which the installation is done
- Minimum concrete cover acc. to EN 1992-1-1:2004+AC:2010 must be observed

Injection System VMU plus for rebar connections

General construction rules for tension anchor ZA

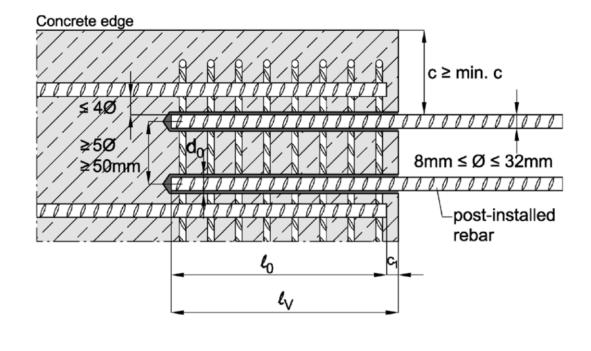
- The length for the post-installed thread must not be added to the anchoring length
- The tension anchor ZA can only transfer forces towards the bar axis
- Tension forces must be transferred by an overlap joint into the present reinforcement of the member
- The transmission of shear forces must be ensured by additional measures, e.g. by shear cleats or anchors with an European Technical Assessment (ETA)
- In the anchor plate the holes for the tension anchors must be executed as elongated holes with axis in the direction of the shear force
- If the clear distance of overlapping bars is greater than 4Ø, the lap length must be increased by a length equal to the clear space where it exceeds 4Ø

Figure B1: Tension Anchor ZA

- c concrete cover of tension anchor ZA
- c1 concrete cover at front end of cast-in-place rebar
- c₂ Length of bonded thread
- min c minimum concrete cover according Table B1 and EN 1992-1-1:2004+AC:2010
- Ø diameter of tension anchor (rebar part)
- d diameter of tension anchor (threaded part)
- lap length acc. to EN 1992-1-1:2004+AC:2010
- ℓ_v embedment depth $\ell_v \ge \ell_0 + c_1$
- l_{ges} overall embedment depth $l_{ges} \ge l_0 + c_2$
- d₀ nominal drill bit diameter according to Table B6

Injection System VMU plus for rebar connections

Intended use


Annex B3

General construction rules (Tension anchor ZA)

General construction rules for post-installed rebars

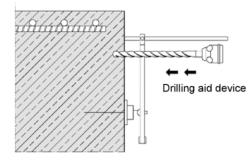
- The shear transfer between old and new concrete shall be designed acc. to EN 1992-1-1:2004+AC:2010
- Only tension forces in the axis of the rebar may be transmitted
- If the clear distance of overlapping bars is greater than 4Ø, the lap length must be increased by a length equal to the clear space where it exceeds 4Ø

Figure B2: Post-installed rebars

- c concrete cover of post-installed rebar
- c1 concrete cover at front end of cast-in-place rebar
- min c minimum concrete cover according Table B1 and EN 1992-1-1:2004+AC:2010
- Ø diameter of tension anchor (rebar)
- lap length acc. to EN 1992-1-1:2004+AC:2010
- ℓ_v embedment depth $\ell_v \ge \ell_0 + c_1$
- d₀ nominal drill bit diameter according to Table B6

Injection System VMU plus for rebar connections

Intended use


Annex B4

General construction rules (post-installed rebar)

Table B1: Minimum concrete cover min c¹⁾ of post-installed rebar and tension anchor ZA depending on drilling method

Drilling method	thod Rod diameter min c (without drilling aid device)		min c (<u>with</u> drilling aid device)
Hammer drilling	< 25 mm	30 mm+ 0,06 • ℓ _v ≥ 2 Ø	30 mm+ 0,02 • $\ell_v \ge 2 \emptyset$
Vacuum drilling	≥ 25 mm	40 mm+ 0,06 • ℓ _v ≥ 2 Ø	40 mm+ 0,02 • ℓ _v ≥ 2 Ø
Compressed air	< 25 mm	50 mm+ 0,08 • ℓ _v	50 mm+ 0,02 • ℓ _v
drilling	≥ 25 mm	60 mm+ 0,08 ∙ ℓ _v	60 mm+ 0,02 ∙ ℓ _v

¹⁾See Annex B3 and B4; Minimum concrete cover acc. to EN 1992-1-1:2004+AC:2010 must be observed.

Table B2: Dimensions and installation parameters of tension anchor ZA

Anchor size	M12	M16	M20	M24		
Thread diameter	d	[mm]	12	16	20	24
Rebar diameter	Ø	[mm]	12	16	20	25
Cross section area (threaded part)	As	[mm ²]	84	157	245	353
Width across nut flats	SW	[mm]	19	24	30	36
Effective embedment depth	l _v	[mm]	according to static calculation			on
Length of bonded thread steel, zinc 		[mm]	≥ 20	≥ 20	≥ 20	≥ 20
		[]	≥ 100	≥ 100	≥ 100	≥ 100
Maximum installation torque	T _{inst}	[Nm]	50	100	150	150

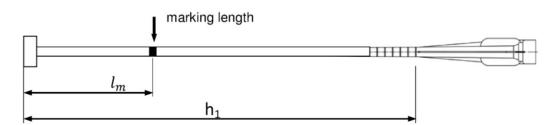
Injection System VMU plus for rebar connections

Minimum concrete cover / Installation parameters ZA

Table B3: Work	able B3: Working and curing time											
Bore hole temperature	Cartridge Working time Minimum of		curing time									
•			dry concrete	wet concrete								
-10°C to - 6°C	≥ +15°C	90 min	24 h	48 h								
- 5°C to - 1°C		90 min	14 h	28 h								
0°C to + 4°C		45 min	7 h	14 h								
+ 5°C to + 9°C		25 min	2 h	4 h								
+ 10°C to + 19°C	+5°C to +25°C	15 min	80 min	160 min								
+ 20°C to + 24°C		6 min	45 min	90 min								
+ 25°C to + 29°C		4 min	25 min	50 min								
+ 30°C to + 40°C	≤ +20°C	2,5 min	15 min	30 min								

able D2. orking and ouring time 141

Table B4: Dispensing tools


	Cartridge			_									
Туре	Size	Han	d tool	Pneumatic tool									
coaxial	150, 280, 333 ml	e.g.: V	e.g.: VM-	P 345 Pneumatic									
соа	380 to 420 ml	e.g.: VM-P 380	e.g.: VM-P 380 Profi	e.g.: VM-	P 380 Pneumatic								
y-side	235, 345 ml e.g.: VM-P 345		e.g.: VM-P 345 Profi	e.g.: VM-P 345 Pneumatic									
side-by-side	825 ml	-	-	e.g.: VM-	P 825 Pneumatic								
All cart	All cartridges can also be extruded by battery tool (e.g. VM-P Akku)												
Injecti	ion System VM	U plus for rebar connecti	ions										
Intend	Intended use												

Intended use Working and curing time / dispensing tools

Dahar	x lension anchor Brush- \emptyset			
Rebar Ø			Brush-Ø	min. Brush-Ø
2	ZA	d ₀	d _b	d _{b,min}
[mm]	[-]	[mm]	[mm]	[mm]
8		12	14	12,5
10		14	16	14,5
12	M12	16	18	16,5
14		18	20	18,5
16	M16	20	22	20,5
20	M20	25	27	25,5
22		28	30	28,5
24		32	34	32,5
25	M24	32	34	32,5
28		35	37	35,5
32		40	43	40,5
-	with air valve	air tool (min. 6	Phil -	
			Phillip	SDS Plus Adaptor
rush RB		Brush extension	A A A A A A A A A A A A A A A A A A A	SDS Plus Adapter
rush RB				SDS Plus Adapter
rush RB				SDS Plus Adapter
rush RB		Brush extension		
rush RB		Brush extension		Static mixer
rush RB		Brush extension Extension pipe		Static mixer

	Tension Drill bit				Cartric all for				artridge: y-side (825 ml)		
Rebar Ø	anchor ZA	diameter d₀	Retaining washer ¹⁾	Hand- or akku-tool		Compressed air tool		Compressed air tool			
			washei	$\ell_{v,max}$	Extension	l _{v,max}	Extension	l _{v,max}	Extension		
[mm]	[-]	[mm]		[cm]	pipe	[cm]	pipe	[cm]	pipe		
8		12	-		VM-XE 10	80	VM-XE 10	80	VM-XE 10		
10		14	VM-IA 14					100			
12	M12	16	VM-IA 16	70		100		120			
14		18	VM-IA 18					100		140	
16	M16	20	VM-IA 20				-	160			
20	M20	25	VM-IA 25			70					
22		28	VM-IA 28		VM-XE 10	70	VM-XE 10	200	VM-XLE 16		
24		32	VM-IA 32	50	VM-XLE 16		VM-XLE 16	200	VIVI-ALE 10		
25	M24	32	VM-IA 32	50		50					
28		35	VM-IA 35	35		50		200			
32		40	VM-IA 40					200			

¹⁾For horizontal or overhead installation as well as for drill holes deeper than 240mm

On the static mixer and the extension pipe the mortar filling mark l_m and the drill hole depth h_1 must be marked with an adhesive tape or text marker. Rough estimate: $l_m = \frac{1}{3} \cdot h_1$ Fill in the mortar as long until the filling mark l_m will be visible.

Optimal mortar volume: $l_m = h_1 * (1,2 * \frac{\phi^2}{d_0^2} - 0,2)$ [mm]

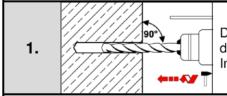
 l_m Length from the end of the retaining washer to the mark on the mixer extension

 h_1 drill hole depth = embedment depth ℓ_v resp. ℓ_{ges})

Ø rebar diameter

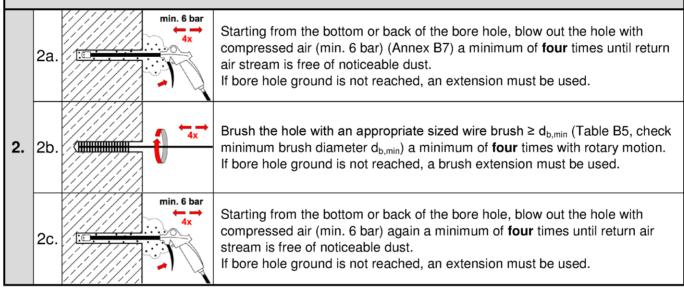
do nominal drill bit diameter

Injection System VMU plus for rebar connections


Intended use

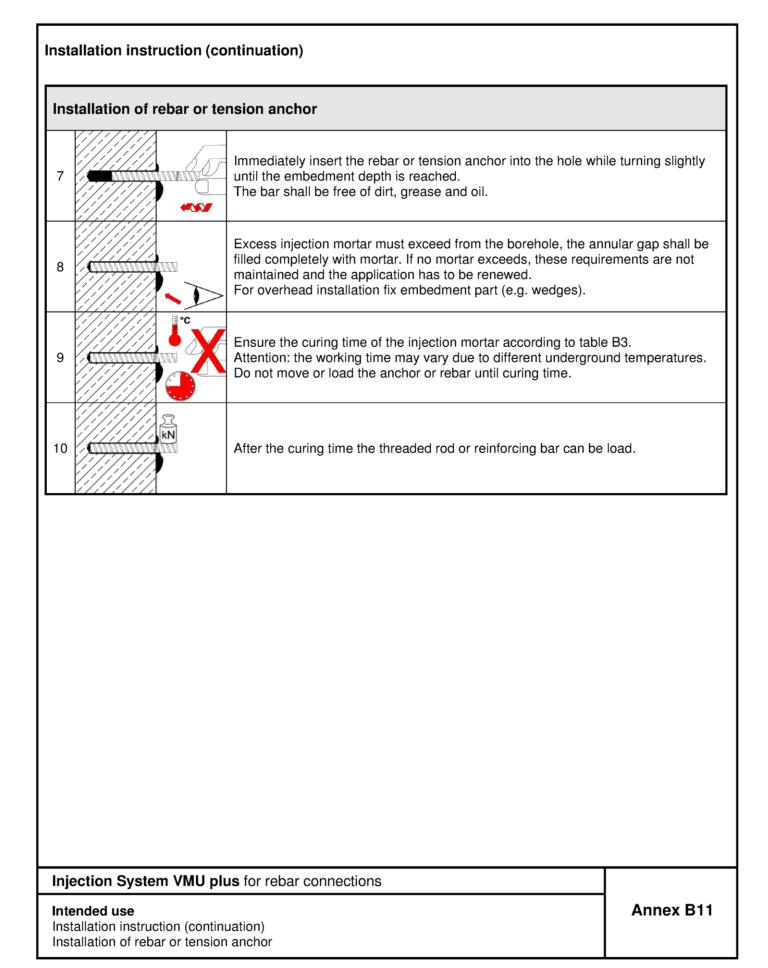
Installation tools, max. embedment depth, marking of extension pipe

Annex B8


Installation instructions

Bore hole drilling

Drill hole by hammer drilling, vacuum drilling or compressed air drilling (with drill bit diameter according to Annex B7 and selected embedment depth). In case of aborted holes, the bore holes must be filled with mortar.


Cleaning

Injection System VMU plus for rebar connections

Intended use Installation instruction Bore hole drilling and cleaning Annex B9

Installation instruction (continuation)											
Pre	Preparing and injection into borehole										
3	<i>l</i> v 000000000000000000000000000000000000	ith tape)									
4 Check drill hole depth by inserting rebar or anchor rod into the empty hole.											
5	THE J	Prepare cartridge with static mixer (if necessary with extension washer). Attach the supplied static-mixing nozzle to the cartridg cartridge into the correct dispensing tool. For every working interruption longer than the recommended w B3) as well as for new cartridges, a new static-mixer shall be us	e and load the orking time (Table								
6 Prior to applying, discard mortar (forerun) until the mortar shows a consistent grey colour, but at least three full strokes. Never use this mortar!											
7		Fill in injection mortar from the bottom of the clean borehole ap free. Slowly moving the static mixer out of the borehole prevent air inclusions. For embedment larger than 190mm an extension must be used.	s the formation of								
8		For overhead and horizontal installation and embedment larger retaining washer shall be used.	than 240mm a								
Inje	ection System VMU plu	us for rebar connections									
Inst	Intended use Installation instruction (continuation) Preparing and injection into the borehole										

Minimum anchorage length and minimum lap length

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($l_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $l_{0,min}$ acc. to Eq. 8.11) shall be multiplied by the amplification factor α_{lb} acc. to Table C1.

Table C1: Amplification factor α_{lb} depending on concrete strength class and drilling method

Concrete strength class			Amplification factor α_{lb} [-]
C12/15 to C50/60	hammer drilling vacuum drilling compressed air drilling	Ø8 to Ø32 ZA-M12 to ZA-M24	1,0

Table C2: Reduction factor kb for all drilling methods

Rod diameter			Concrete strength class							
		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Ø8 to Ø25 ZA-M12 to ZA-M24	к _ь [-]					1,0				
Ø28 to Ø32	k₀ [-]		1,0 0,92 0,86						0,86	

Table C3: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for all drilling methods and for good bond conditions

 $\mathbf{f}_{bd,PIR} = \mathbf{k}_{b} \cdot \mathbf{f}_{bd}$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete strength classes and the rebar diameter according to EN 1992-1-1:2004+AC:2010 (for all other bond conditions multiply the values by 0,7) k_b : Reduction factor according to Table C2

Rod diameter		Concrete strength class							
Rod diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Ø8 to Ø25 f _{bd,F} ZA-M12 to ZA-M24 [N/m		2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
\varnothing 28 to \varnothing 32 $f_{bd,F}$ [N/m		2,0	2,3	2,7	3,0	3,4	3,7	3,7	3,7

Injection System VN	U plus for rebar	connections
---------------------	------------------	-------------

Annex C1

Design value of ultimate bond stress $f_{bd,fi}$ under fire exposure for concrete classes C12/15 to C50/60 (all drilling methods):

The design value of ultimate bond stress f_{bd,fi} under fire exposure will be calculated by the following equation:


$$\begin{split} & \textbf{f}_{bd,fi} \ = \ \textbf{k}_{fi}(\theta) \cdot \textbf{f}_{bd,PIR} \cdot \gamma_c \ / \ \gamma_{M,fi} \\ & \text{with: } \theta \leq 243^\circ\text{C:} \quad k_{fi}(\theta) = 18,88 \ ^* \ \theta^{\ (\theta^* \cdot 0,016)} \ / \ (f_{bd,PIR} \ ^* \ 4,3) \ \leq \ 1,0 \\ & \theta > 243^\circ\text{C:} \quad k_{fi}(\theta) = 0 \\ & f_{bd,fi} \\ & \theta \\ & \text{Temperature in } ^\circ\text{C in the mortar layer} \end{split}$$

- $k_{fi}(\theta)$ Reduction factor under fire exposure
- f_{bd,PIR} Design value of the ultimate bond stress in N/mm² in cold condition according to Table C2 considering concrete class, rebar diameter, drilling method and the bond conditions according to EN 1992-1-1:2004+AC:2010
- γc Partial factor EN 1992-1-1:2004+AC:2010
- γ_{M,fi} Partial factor EN 1992-1-2:2004+AC:2008

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond stress fbd,fi.

Figure C1: Example graph of reduction factor $k_{fi}(\theta)$

Concrete strength class C20/25 for good bond conditions

Table C4: Characteristic tension strength in case of fire for tension anchor ZA,

concrete strength class C12/15 to C50/60, acc. to Technical Report TR 020

Tension anchor ZA				M12	M16	M20	M24		
Steel failure									
Steel, zinc plated									
Characteristic tension strength	R30	σ _{Rk,s,fi}	[N/mm²]	20					
	R60			15					
	R90			13					
	R120			10					
Stainless steel A4, HCR									
Characteristic tension strength	R30	σ _{Rk,s,fi}	[N/mm²]	30					
	R60			25					
	R90			20					
	R120				1	6			

Design value of the tension strength $\sigma_{\text{Rd},s,\text{fi}}$ under fire exposure for tension anchor ZA

The design value of the steel strength $\sigma_{\text{Rd},s,\text{fi}}$ under fire exposure will be calculated by the following equation:

 $\sigma_{\text{Rd,s,fi}} = \sigma_{\text{Rk,s,fi}} / \gamma_{\text{M,fi}}$

with:

 $\sigma_{Rk,s,fi}$ characteristic steel strength acc. to Table C4

 $\gamma_{M,fi}$ partial factor under fire exposure acc. to EN 1992-1-2:2004+AC:2008

Injection System VMU plus for rebar connections

Annex C3

Steel strength for tension anchor ZA under fire exposure